Appendix F - Part 2 Hazardous Materials Studies

PHASE II SUBSURFACE INVESTIGATION REPORT

Marriott Burbank Hotel

2500 North Hollywood Way Burbank, California 91505

April 7, 2022

Partner Project Number: 20-303682.2

Prepared for:

AWH Partners, Inc.

1040 Avenue of the Americas, 9th Floor New York , New York 10018

April 7, 2022

Tim Osiecki AWH Partners, Inc. 1040 Avenue of the Americas, 9th Floor New York, New York 10018

Subject: Phase II Subsurface Investigation Report

> Marriott Burbank Hotel 2500 North Hollywood Way Burbank, California 91505

Partner Project Number: 20-303682.2

Dear Mr. Osiecki:

Partner Engineering and Science, Inc. (Partner) is pleased to provide the results of the assessment performed at the above-referenced property. The following report describes the field activities, methods, and findings of the Phase II Subsurface Investigation conducted at the above-referenced property.

This assessment was performed consistent with acceptable industry standards. The independent conclusions represent Partner's best professional judgment based upon existing conditions and the information and data available to us during the course of this assignment.

We appreciate the opportunity to provide these services. If you have any questions concerning this report, or if we can assist you in any other matter, please contact William Marcus at (904) 460-4641.

Sincerely,

Partner Engineering and Science, Inc.

Bruce Eppler, PG Sr. Project Manager

William Marcus

Principal

TABLE OF CONTENTS

1.0	Introduction	1
1.1	Purpose	1
1.2	Limitations	1
1.3	User Reliance	1
2.0	Site Background	2
2.1	Site Description	2
2.2	Site History	2
2.3	Geology and Hydrogeology	3
3.0	Field Activities	4
3.1	Preparatory Activities	4
3.1	1.1 Utility Clearance	4
3.1	1.2 Health and Safety Plan	4
3.2	Drilling Equipment	4
3.3	Sample Locations	4
3.4	Soil Sampling	4
3.5	Soil Gas Sampling	5
3.6	Investigation Derived Waste	6
4.0	Data Analysis	7
4.1	Laboratory Analysis	7
4.2	Regulatory Agency Comparison Criteria	7
4.3	Soil Sample Data Analysis	8
4.4	Soil Gas Sample Data Analysis	8
4.5	Discussion	
5.0	Summary and Conclusions	9

ATTACHMENTS

Tables 1. Summary of Investigation Scope

2. Soil Gas VOCs Laboratory Results

Figures 1. Site Location Map

2. Vicinity Map

3. Sample Location Map

Appendices A. Boring Logs

B. Laboratory Analytical Reports

1.0 INTRODUCTION

Purpose 1.1

The purpose of the investigation was to evaluate recognized environmental conditions (REC's) identified in Partner's Phase I Environmental Site Assessment (Phase I) dated March 25, 2021. This work was performed prior to planned redevelopment of the parcel for a multi-story hotel to assess the presence of volatile organic compounds (VOCs) that could potentially require mitigation and/or remediation during construction activities. AWH Partners, Inc. provided project authorization of Partner Proposal Number P20-303682.

1.2 Limitations

This report presents a summary of work conducted by Partner. The work includes observations of site conditions encountered and the analytical results provided by an independent third-party laboratory of samples collected during the course of the project. The number and location of samples were selected to provide the required information. It cannot be assumed that the limited available data are representative of subsurface conditions in areas not sampled.

Conclusions and/or recommendations are based on the observations, laboratory analyses, and the governing regulations. Conclusions and/or recommendations beyond those stated and reported herein should not be inferred from this document.

Partner warrants that the environmental consulting services contained herein were accomplished in accordance with generally accepted practices in the environmental engineering, geology, and hydrogeology fields that existed at the time and location of work. No other warranties are implied or expressed.

1.3 User Reliance

Partner was engaged by AWH Partners, Inc. (the Addressee), or their authorized representative, to perform this investigation. The engagement agreement specifically states the scope and purpose of the investigation, as well as the contractual obligations and limitations of both parties. This report and the information therein, are for the exclusive use of the Addressee. This report has no other purpose and may not be relied upon, or used, by any other person or entity without the written consent of Partner. Third parties that obtain this report, or the information therein, shall have no rights of recourse or recovery against Partner, its officers, employees, vendors, successors or assigns. Any such unauthorized user shall be responsible to protect, indemnify and hold Partner, the Addressee and their respective officers, employees, vendors, successors and assigns harmless from any and all claims, damages, losses, liabilities, expenses (including reasonable attorneys' fees) and costs attributable to such use. Unauthorized use of this report shall constitute acceptance of, and commitment to, these responsibilities, which shall be irrevocable and shall apply regardless of the cause of action or legal theory pled or asserted.

This report has been completed under specific Terms and Conditions relating to scope, relying parties, limitations of liability, indemnification, dispute resolution, and other factors relevant to any reliance on this report. Any parties relying on this report do so having accepted Partner's standard Terms and Conditions, a copy of which can be found at http://www.partneresi.com/terms-and-conditions.php.

2.0 SITE BACKGROUND

2.1 **Site Description**

The subject property consists of one parcel of land comprising approximately 11.72 acres located on the east side of 2500 North Hollywood Way, within a mixed residential, commercial, industrial area of Burbank, Los Angeles County, California. The subject property is currently occupied by Marriott Burbank for hospitality and hotel use. Onsite operations consist of leasing of rooms to guests in two hotel towers designated as East Tower and West Tower. No environmentally sensitive operations are conducted onsite. In addition to the current structure, the subject property is also improved with a convention center, two restaurants, two swimming pools, and interior amenities including meeting rooms, lounges, and a fitness center.

Refer to Figures 1 and 2 for a site location map and vicinity map showing site features and surrounding properties.

2.2 **Site History**

According to available historical sources, the subject property was undeveloped as early as 1894; developed with what appears to have been a large commercial/industrial building associated with Lockheed Martin Corporation between circa 1952 – circa 1983 (eastern portion); developed with light industrial facilities and auto repair facilities from the 1950s - 1960s (western portion); and developed with the current structures in 1982 and 1990.

The immediately surrounding properties consist of a multi-tenant office building, Thornton Avenue, and an airport parking lot to the north; vacant land and a multi-tenant office building to the south; multi-tenant offices to the east; and Denny's, Del Taco, and McDonald's restaurants to the west across Hollywood Way.

Partner completed a Phase I Report, dated March 25, 2021, prepared on behalf of AWH Partners.

The Phase I identified the following RECs:

- Based on our historical and regulatory review, the subject property was part of the historical Lockheed Martin Corporation facilities (eastern portion). Specifically, Sanborn Maps readily available between 1953 and 1968 identified the eastern portion of the subject property to be improved with a portion of a larger building which was identified to include assembling, shipping and crating, offices, and a test laboratory (1956, 1960, 1966, and 1968 Sanborn maps). In addition, what appears to have been a historical subject property address of 3220 West Thornton Avenue, under the name Lockheed A-1, B85, Lots 16, 16A, was identified on the Cleanup Program Sites-Spills, Leaks, Investigations, and Cleanups (CPS-SLIC), and Well Investigation Program (WIP) databases.
- The San Fernando Valley (Area 1) North Hollywood, CA Superfund Site is being addressed through federal, state, municipal, and potential responsible party (PRP) actions. The current site status of the Burbank Operable Unit area includes the temporary remedy of extraction and treatment of groundwater. The City of Burbank's Public Service Department receives groundwater from the site blended with treated groundwater to reduce nitrate levels and then distributes it to the public water supply system. Operation of this remedy commenced in 1996 and groundwater treatment has since removed approximately 36 billion gallons of VOCs contaminated water. Contaminants of concern

are reported to be trichloroethene (TCE), tetrachloroethene (PCE), 1,4, dioxane, hexavalent chromium, and 1,2,3,-trichloropropane (1,2,3-TCP). Although use of contaminated groundwater is considered the greatest human health risk, the extraction of groundwater is strictly regulated, therefore no unauthorized use is anticipated. In addition, no impacts to indoor air (via the vapor intrusion pathway) or inhalation exposures for construction workers are likely due to the depth of contaminated groundwater, which is reported to be at 250 feet below ground surface (bgs). Based on the above, the area wide confirmed groundwater contamination is not expected to present a risk to health or safety to the subject property occupants or to impede the current use of the subject property. As such, no further investigation is deemed warranted at this time.

Based on our review of historical Sanborn Maps, the western portion of the subject property was
improved with a small single-story battery manufacturing facility, as well as small single-story auto
electric repair facility in the 1960, 1966, and 1968 Sanborn maps. These types of facilities typically
generate various wastes such as chlorinated solvents and lead as part of their operations. However,
based on the small size scale of these facilities, it is not suspected that any significant
manufacturing/generation of hazardous wastes occurred at these locations.

2.3 Geology and Hydrogeology

Review of the United States Geological Survey (USGS) *Burbank, California,* Quadrangle topographic map, indicates the subject property is situated approximately 670 feet above mean sea level, and the local topography is sloping gently to the southeast.

Based on borings advanced during this investigation, the underlying subsurface consists predominantly of fine sands with silt and clays from the ground surface to approximately 20 feet bgs.

Groundwater was not encountered during this investigation and was not a part of the scope of work. According to information from the California State Water Resources Control Board (SWRQCB) GeoTracker website, as well as information obtained from the EPA website associated with the San Fernando Valley (Area 1) North Hollywood, CA Superfund Site the depth to groundwater in the vicinity of the subject property is inferred to be approximately 200-250 feet bgs. In addition, according to information provided within the regulatory database report and from topographic map interpretation, groundwater flow is inferred to be toward the southeast.

3.0 FIELD ACTIVITIES

The Phase II Subsurface Investigation scope included a geophysical survey and the advancement of 9 borings (SV-1 through SV-9) to collect representative soil and soil gas samples. Refer to Table 1 for a summary of the borings, sampling schedule, and laboratory analyses for this investigation.

Preparatory Activities 3.1

Prior to the initiation of fieldwork, Partner completed the following activities.

3.1.1 Utility Clearance

Partner delineated the work area with white spray paint and notified DigAlert to clear public utility lines as required by law at least two business days prior to drilling activities. DigAlert issued ticket number A211410020-00A for the project.

In addition, Partner subcontracted with Ground Penetrating Radar Systems (GPRS) on DATE to clear boring locations of utilities. GPRS systematically free-traversed each proposed boring location with a Radiodetection model RD7000 electromagnetic induction (EM) equipment unit with line-tracing capabilities, and a GSSI model SIR-3000 ground penetrating radar (GPR) unit. The data was interpreted in real time for evidence of utility lines and/or other subsurface features of potential concern. Based on the findings of the GPR survey, no subsurface utilities were identified within the proposed boring locations.

3.1.2 Health and Safety Plan

Partner prepared a site-specific Health and Safety Plan, which was reviewed with on-site personnel involved in the project prior to the commencement of drilling activities.

Drilling Equipment

On May 25, 2021, Partner subcontracted with ABC Lovin Drilling (ABC), (State of California C-57 Water Well Drilling Contractor License Number 422904) to provide and operate drilling equipment. ABC, under the direction of Partner, advanced borings SV-1 through SV-9 with a limited-access/truck-mounted Geoprobe Model 540MT direct push rig. Sampling equipment was decontaminated between sample intervals and boring locations to prevent cross-contamination.

Sample Locations

Borings SV-1 through SV-5 were advanced in the general area of the future hotel lobby and surrounding first floor office spaces. SV-6 through SV-9 were advanced in the area of the future sub-grade parking garage structure on the eastern side of the parcel.

Refer to Figure 3 for a map indicating sample locations.

3.4 **Soil Sampling**

All boring locations were overlain by asphalt, which was penetrated using a punch bit attachment advanced by the direct-push drill rig. Borings SV-1 through SV-5 were advanced to a terminal depth of 5 feet bgs and borings SV-6 through SV-7, and SV-9 were advanced to a terminal depth of 20 feet bgs. Boring SV-8 encountered drilling refusal at 16 feet bgs. Soil was retrieved from each boring using a 4-foot long by 2-

inch diameter MacroCore sampler with an acetate liner, which was advanced by the direct-push drill rig using drill rods. The sampler was driven into the subsurface to collect undisturbed soil with the MacroCore barrel and liners in each 4-foot sample interval.

A lengthwise section of each acetate liner was removed with a splitting tool to expose the soil. The soil column was observed for discoloration, monitored for odors, and classified in accordance with the Unified Soil Classification System (USCS). Select intervals were placed in sealable plastic bags and field-screened with a photoionization detector (PID) calibrated to isobutylene. None of the collected soil samples appeared to exhibit discoloration or an odor. None of the PID readings suggested the presence of elevated volatile organics concentrations.

Soil samples were collected from borings SV-1 through SV-5 at 5 feet bgs, and from SV-6, SV-7, and SV-8 at 5, 10 and 20 feet bgs. Note, samples in SV-8 were collected at 5 and 10 feet bgs due to drilling refusal and sample loss at 16 feet bgs. At the desired sampling depth, sub-cores were collected directly from the sampler soil core using a dedicated disposable plastic syringe, and retained in two pre-weighed, laboratory-supplied, 40-milliter (mL), sodium bisulfate-preserved and one methanol-preserved volatile organics analysis (VOA) vials and sealed with Teflon-lined septum caps in accordance with EPA Method 5035 sampling protocol. Sample VOA vials were labeled for identification, stored in an iced cooler, and transported under chain-of-custody protocol to SunStar Laboratories, Inc. (SunStar) a state-certified laboratory (California Department of Public Health Environmental Laboratory Accreditation Program certificate number 2250) in Lake Forest, California for analysis for VOCs in accordance with EPA Method 8260B.

3.5 Soil Gas Sampling

Soil gas probes screened at five feet bgs (SV-1 through SV-5), at 5, 10 and 20 feet bgs (SV-6, SV-7 and SV-9), and at 5, 10, and 16 feet bgs (SV-8) were constructed within the boreholes upon completion of soil sampling. A new section of ¼-inch diameter polyethylene tubing with a new ¼-inch diameter polypropylene filter at the terminal end was inserted into the borehole to the desired sampling depth. One-inch diameter polyvinyl chloride (PVC) casing was used as a guide for the tubing to ensure that the desired sampling depth was achieved. Sand was poured into the boring annulus to form an approximately one-foot long sand pack around the polypropylene filter, at which time the PVC piping was withdrawn. Approximately one foot of dry, granular bentonite was placed atop the sand pack and the remainder of the borehole was backfilled with hydrated bentonite to the ground surface to form a seal. The sampling end of the tubing was fitted with a valve and the probe was labeled for identification.

Soil gas samples were collected on June 3, 2021 to allow sufficient time for equilibrium of subsurface conditions in general accordance with the July 2015 Department of Toxic Substances Control (DTSC) and Los Angeles Regional Water Quality Control Board (LARWQCB) "Advisory – Active Soil Gas Investigations."

Soil gas samples were collected at the bottom screened interval from each boring using one-liter, stainless-steel, cylindrical SUMMA canisters. The sampling containers were provided by SunStar, which subjected each canister to a rigorous cleaning process using a combination of dilution, heat, and high vacuum. After

cleaning, the canisters were batch certified to be free of target contaminants to a specified reporting limit via gas chromatography/mass spectroscopy prior to delivery.

Partner received the SUMMA canisters evacuated to approximately minus 30 inches of mercury. The SUMMA canisters were fitted with stainless-steel flow controllers, which Sunstar calibrated to maintain constant flow (approximately 0.1 liter per minute) for approximately five to 10 minutes of sampling time.

The sample tubing and sampler screen were purged of ambient air using a separate one-liter SUMMA purge volume canister evacuated to approximately minus 30 inches of mercury. A Tracer gas [1,1-diflouroethane (1,1-DFA)] was placed around each probe at the ground surface while sampling to detect ambient air intrusion. The tracer gas was not detected in any sample, indicating that the integrity of the bentonite seal was maintained. Once the one-liter purge volume canisters were filled, the sampling end of the tubing was fitted to the sampling canister and the port valve was opened, causing air to enter the sample container due to the pressure differential. Partner closed the valves after the canister was evacuated to approximately minus one to two inches of mercury, with pertinent data (e.g., time, canister vacuum) recorded at the start and end of sampling.

One duplicate QA/QC sample was additionally collected from each assessment area (SV-4-5-DUP and SV-7-20-DUP). Following sample collection, the SUMMA canisters were transported in an iced cooler under chain of custody protocol to SunStar laboratory for VOC analysis by EPA Method TO-15.

3.6 Investigation Derived Waste

Due to the direct-push Geoprobe drilling methodology, no investigation derived waste (IDW) was generated during this investigation. Additionally, all soil samples were submitted to the laboratory and any unanalyzed samples were disposed of at the laboratory.

4.0 DATA ANALYSIS

4.1 Laboratory Analysis

Partner collected 16 soil samples and 11 soil-gas samples on May 25 and June 3 respectively, which were transported in an iced cooler (soil samples) or at ambient temperature (soil gas samples) under chain-of-custody protocol to SunStar for analysis. Soil samples were analyzed for VOCs via EPA Method 8260b.

Each soil gas sample (9 soil gas samples, and two QA/QC duplicate samples) were analyzed for VOCs via EPA Method TO-15.

Laboratory analytical results are included in Appendix B and discussed below.

4.2 Regulatory Agency Comparison Criteria

Regional Screening Levels (RSLs) (formerly Preliminary Remediation Goals [PRGs]) are generic, risk-based chemical concentrations developed by the EPA Region 9 for use in initial screening-level evaluations. RSLs combine human health toxicity values with standard exposure factors to estimate contaminant concentrations that are considered to be health protective of human exposures over a lifetime through direct-contact exposure pathways (e.g., via inhalation and/or ingestion of and/or dermal contact with impacted soil and/or indoor air). RSLs are not legally enforceable standards, but rather are considered guidelines to evaluate if potential risks associated with encountered chemical impacts may warrant further evaluation.

The DTSC Office of Human and Ecological Risk (HERO) and the Office of Environmental Health Hazard Assessment (OEHHA) developed California-Modified RSLs based on a review of 1) the differences in methodology between PRGs and RSLs 2) RSL concentrations, and 3) recent toxicity values.

While soil gas detections are not immediately comparable to the indoor air quality guidelines within the RSLs, the DTSC issued a recommended default attenuation factor of 0.03 (commercial contaminant source sampling locations) for sites where the attenuation factor for the building slab is unknown or cannot be assessed as stated in the October 2011 document *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air*. With the subsurface contaminant concentrations and default attenuation factors, the associated contaminant concentrations in indoor air can be estimated as calculated residential and commercial/industrial Soil Gas Screening Levels (SGSLs).

The primary screening levels for ambient air were referenced from OEHHA and DTSC, HERO Note 3 Tables – April 2019. Where screening levels were not yet established for a specified VOC by the DTSC or OEHHA, the federal screening levels for ambient air were referenced from the EPA Region 9 RSLs (November 2019) in calculating the SGSL for that VOC.

4.3 Soil Sample Data Analysis

With the exception of SV-6-10, no VOCs were detected in any soil samples analyzed. Benzene was detected in SV-6-10 at a concentration of 5.2 ug/kg.

4.4 Soil Gas Sample Data Analysis

PCE was detected in all samples above the commercial SGS ranging from 240 ug/m³ in SV-5 to 2400 ug/m³ in SV-7. TCE was detected above the commercial SGSL in SV-7, SV-8, and SV-9. TCE was detected above the residential SGSL but below the commercial SGSL in SV-6 and in the duplicate sample for SV-4. Benzene was detected above the residential SGSL at a concentration of 12 ug/m³ in SV-9. Bromodichloromethane was detected in SV-7 and SV-7 duplicate at 4.2 ug/m³ which was just above the residential SGSL and below the commercial SGSL for this constituent. All other VOCs detected were below residential SGSLs.

Refer to Table 2 for a summary of the soil gas sample VOCs laboratory analysis results.

4.5 Discussion

No VOCs were detected in soil with the exception of benzene in SV-6-10 at 5.2 ug/kg. Because benzene was not detected in any other soil sample analyzed, it is considered anomalous and insignificant to the findings.

The detections of elevated PCE and TCE in soil-gas samples from both shallow and deep probe intervals is consistent with the presence of a regional VOC plume beneath the area as a result of former manufacturing in the area as noted in the RECs from the Phase I. This is further evident by the fact that PCE and TCE concentrations in soil-gas samples collected from the deeper intervals at 20 feet bgs (SV-6 through SV-9) were generally higher in concentration in all samples as might be expected from a regional groundwater plume beneath the area.

5.0 SUMMARY AND CONCLUSIONS

Partner conducted a Phase II Subsurface Investigation at the subject property to evaluate REC's identified in Partner's Phase I dated March 25, 2021. This work was performed prior to planned redevelopment of the parcel for a multi-story hotel to assess the presence of VOCs that could potentially require mitigation and/or remediation during construction activities.

The investigation included the installation of nine soil borings (SV-1 though SV-9) beneath the future hotel and parking garage footprint.

The lithologic materials encountered during drilling included fine sands, silts and some gravels to the maximum depth of exploration at 20 feet bgs. Groundwater was not encountered in any of the borings.

Soil and soil-gas samples were collected from each boring and analyzed for VOCs by EPA Methods 8260 and TO-15 respectively.

No detections of VOCs were made in any soil samples with one exception of benzene in SV-6-10 at 5.2 ug/kg which is considered anomalous.

PCE was detected in all soil-gas samples at concentrations that exceed the commercial SGSL. TCE was detected in three of the deeper probe interval samples at concentrations above the commercial SGSLs, and above the residential SGSL in one deep interval sample. Benzene and bromodichloromethane were detected in two samples, SV-9-20 and SV-7-20 respectively, at concentrations that slightly exceed the residential SGSLs.

Based on the results of this subsurface investigation, there is evidence of elevated VOCs in soil-gas (specifically PCE and TCE) beneath subject property that may present a vapor intrusion risk to future property development. These VOCs are considered to be the result of a regional groundwater VOC plume in the region as noted from the Phase I REC findings.

Partner recommends that an appropriate vapor intrusion mitigation system (VIMS) using a VOC compatible vapor barrier be incorporated into the design of any future on-site structures where there may be a potential for vapor intrusion risk to occupants. The elements of the VIMS should include the design of an appropriate vapor barrier compatible with known VOCs, installation oversight to ensure compliance with VOC barrier manufacturers' warranty requirements, and subsequent post-installation VOC barrier integrity testing (if required). These elements could be self-directed by AWH Partners with a VIMS design approval by the City of Burbank.

Also, due to planned excavation work for the future parking garage and related hotel grading and utility operations, it is recommended (and may be required) that a soils management plan (SMP) be prepared to address the proper characterization and handling of potential VOC impacted soils, and other COCs that may be present outside of this investigation scope.

TABLES

Table 1: Summary of Investigation Scope 2500 North Hollywood Way, Burbank, CA 90515 Partner Project Number 20-303682.1 June 2021

Boring Identification	Location	Terminal Depth (feet bgs)	Matrix Sampled	Sampling Depths* (feet bgs)	Target Analytes
				ı	1
SV-1	Hotel lobby and surrounding	5	Soil	5	Chlorinated
30-1	office spaces	3	Soil Gas	5	Solvents
SV-2	Hotel lobby and surrounding	5	Soil	5	Chlorinated
30-2	office spaces	5	Soil Gas	5	Solvents
SV-3	Hotel lobby and surrounding	5	Soil	5	Chlorinated
30-3	office spaces	5	Soil Gas	5	Solvents
SV-4	Hotel lobby and surrounding	5	Soil	5	Chlorinated
30-4	office spaces	5	Soil Gas	5	Solvents
SV-5	Hotel lobby and surrounding	5	Soil	5	Chlorinated
34-3	office spaces	,	Soil Gas	5	Solvents
SV-6	Sub-grade parking garage	20	Soil	5.10,20	Chlorinated
	Sub grade parking garage		Soil Gas	20	Solvents
SV-7	Sub-grade parking garage	20	Soil	5.10,20	Chlorinated
	grade parking garage	13	Soil Gas	20	Solvents
SV-8	Sub-grade parking garage	16	Soil	5,10	Chlorinated
3,0	Sub-grade parking garage	10	Soil Gas	16	Solvents
SV-9	Sub-grade parking garage	20	Soil	5,10,20	Chlorinated
	Sas grade parking garage	e 20 _	Soil Gas	20	Solvents

 $[\]ensuremath{^{*}}\xspace$ Actual samples to be determined in field based on conditions, etc.

bgs = below ground surface

Table 2: Soil Gas VOCs Laboratory Results (µg/m3) 2500 North Hollywood Way, Burbank, CA 90515 Partner Project Number 20-303682.1 June 2021

														_																	
EPA N	lethod																TO-15														
Sample Identification	Sample Depth (feet bgs)	PCE	TCE	Carbon Tetrachloride	Methylene Chloride	Bromodichloromethane	1,1 Dichloroethene	1,1-Difluroethane (Freon 152)	1,1,2-trichloro-1,2,2- trifluroethane (Freon 113)	cis-1,2-DCE	1,1,1-Trichloroethane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	4-Ethyltoluene	Hexane	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Acetone	Chloroform	Carbon Disulfide	Styrene	Tetrahydrofuran	1,2,4-Trimethylbenzene	1,3,5 Trimethylbenzene	2-Butanone	Isopropyl Alcohol	Trichlorofluoromethane	Other VOCs
Current	Residential SGSL ($\alpha = 0.03$)	15.3	16.0	NA	33.3	2.5	2433.0	NA	NA	277	NA	NA	NA	NA	2,433	3.23	10,333	36.7	333	333	106,667	4.00	2,433	31,333	7,000	210	NA	17,333	700	NA	NA
Current Commercial	I/Industrial SGSL ($\alpha = 0.03$)	66.7	100	NA	400	11.0	10333.0	NA	NA	1,167	NA	NA	NA	NA	10,333	14.0	43,333	163	1,467	1,467	466,667	17.7	10,333	130,000	29,333	867	NA	73,333	2,933	NA	NA
Previous R	esidential SGSL ($\alpha = 0.002$)	230	240	NA	500	38.0	36500.0	NA	NA	4,150	NA	NA	NA	NA	36,500	48.5	155,000	550	5,000	5,000	1,600,000	60.0	36,500	470,000	105,000	3,150	NA	260,000	10,500	NA	NA
Previous Commercial/	Industrial SGSL ($\alpha = 0.001$)	2,000	3,000	NA	12,000	330.0	310000.0	NA	NA	35,010	NA	NA	NA	NA	310,000	420	1,300,000	4,900	44,000	44,000	14,000,000	530	310,000	3,900,000	880,000	26,000	NA	2,200,000	88,000	NA	NA
Other Commercial/Ir	ndustrial SGSL ($\alpha = 0.0009$)	2,222	3,333	NA	13,333	366.7	344444.0	NA	NA	38,900	NA	NA	NA	NA	344,444	467	1,444,444	5,444	48,889	48,889	15,555,556	589	344,444	4,333,333	977,778	28,889	NA	2,444,444	97,778	NA	NA
	Basis	DTSC	EPA	NA	DTSC	EPA	DTSC	NA	NA	EPA	NA	NA	NA	NA	EPA	DTSC	DTSC	EPA	EPA	EPA	EPA	EPA	EPA	DTSC	EPA	EPA	NA	EPA	EPA	NA	NA
SV-1-5	5	960.00	7.10	ND	ND	ND	ND	ND	170.00	27.00	ND	ND	ND	0.91	ND	ND	5.10	ND	ND	ND	19.00	ND	2.10	5.50	ND	4.60	ND	11.00	2.90	ND	ND
SV-2-5	5	610.00	4.40	ND	ND	ND	ND	9.10	73.00	ND	ND	ND	ND	1.10	4.70	ND	3.30	1.20	3.70	1.80	38.00	ND	ND	7.60	ND	5.60	ND	9.80	3.40	ND	ND
SV-3-5	5	910.00	4.40	ND	ND	ND	ND	ND	110.00	ND	ND	ND	ND	ND	ND	1.40	6.60	1.10	4.20	1.80	34.00	0.94	2.30	7.10	4.10	6.00	ND	18.00	3.30	ND	ND
SV-4-5	5	340.00	11.00	0.22	ND	ND	ND	7.70	54.00	ND	ND	0.96	ND	ND	ND	0.62	2.70	1.10	3.20	1.60	43.00	4.80	1.10	7.20	ND	4.70	ND	8.70	5.60	ND	ND
SV-5-5	5	240.00	8.80	ND	6.90	ND	ND	ND	58.00	ND	ND	ND	0.91	1.80	ND	0.60	5.70	1.60	5.30	2.50	25.00	0.92	ND	7.10	ND	11.00	ND	ND	110.00	ND	ND
SV-6-20	20	1000.0	81.00	3.9	ND	ND	ND	12.0	280.0	ND	ND	2.0	ND	0.7	ND	0.97	3.6	ND	ND	ND	82.0	0.87	ND	7.1	ND	4.9	ND	31.0	9.4	3.6	ND
SV-7-20	20	2400.0	480.0	9.7	ND	4.2	3.6	ND	460.0	ND	0.91	1.6	ND	0.73	ND	0.95	3.3	1.4	3.6	1.4	42.0	2.4	ND	4.0	ND	4.4	ND	11.0	3.5	6.9	ND
SV-8-20	16	990.0	220.0	4.7	ND	ND	ND	7.2	190.0	ND	1.3	2.3	ND	ND	ND	1.20	3.6	3.6	6.3	2.6	57.0	2.1	2.2	8.0	ND	7.9	ND	21.0	3.4	4.4	ND
SV-9-20	20	1500.0	280.0	6.0	13.0	ND	ND	15.0	200.0	2.5	ND	ND	ND	15.0	ND	12.00	6.2	84.0	110.0	29.0	70.0	ND	ND	5.7	ND	83.0	13.0	20.0	7.4	3.8	ND
SV-4-5-DUP	5	360.0	77	ND	ND	ND	ND	6.3	59.0	ND	1.9	ND	3.3	0.96	ND	0.57	3.0	1.3	3.9	1.6	25.0	1.10	ND	5.8	ND	4.6	ND	4.7	ND	ND	ND
SV-7-20-DUP	20	2300.0	450.0	9.1	ND	4.2	3.2	8.7	430.0	1.5	ND	1.6	ND	ND	ND	0.73	2.6	0.66	1.9	0.99	36.0	2.1	ND	2.3	ND	2.3	ND	7.0	3.5	6.7	ND

Notes:

VOCs = volatile organic compounds
EPA = Environmental Protection Agency

µg/m¹ = micrograms per cubic meter
bgs = below ground surface
ND = not detected above laboratory limits
NA = not analyzed
TCE = trichloroethene
PCE = tetrachloroethene
CC = or tofleeted above indicated laboratory Reporting Limit (RL)

α = attenuation factor

FIGURES

N
Drawing Not To Scale

KEY:
Subject Property

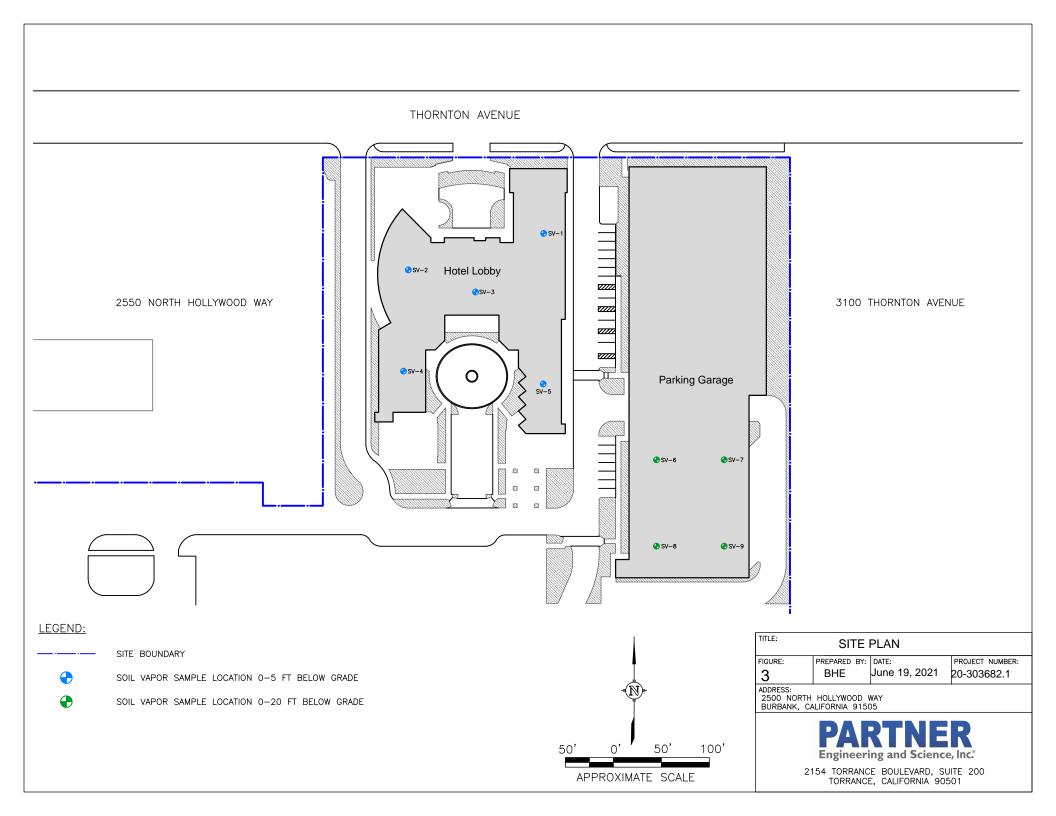


FIGURE 2: SITE VICINITY MAP BURBANK CA Project No. 21-311212.1

DADTNE

APPENDIX A: BORING LOGS

BORING: SV-1

2154 Torrance Boulevard, Suite 200

TOTAL DE	PTH: 5	'				Torrance Bou Torrance, Cali	
	PROJECT I	NFORMATIC	N		DRILLIN	G INFORMATION	
PROJECT: JOB NO.: LOCATION: SITE ADDRESS: LOGGED BY: REVIEWED BY:	Marriott- Burb SM20-303682 NE Corner of 2500 North H Burbank, Cali J.M. R. Traylor	2.1 Proposed courty ollywood Way	ard		DATES DRILLED: DEPTH TO GROUNDWATER: DRILLER: RIG TYPE: METHOD OF DRILLING: SAMPLING METHODS: BORING DIAMETER:	05/25/21 NA ABC Liovin Truck Mounted Geoprob Direct Push Dual tube 2.25"	le 6600
DEPTH SAM	IPLE (mdd)	BLOW COUNT USCS	SOIL		SOIL TYPE	BORING COMPLETION	DESCRIPTION
0	V-1-5' 24.1		SM	3.5" Asphalt/ 4 Brown, moist, I	oose, silty SAND		4" Diameter Well Box Concrete pad Sampling Valve Hyrdated Bentonite Chips 0.25" Diameter Flexible Nylaflow Tubing Dry Granular Bentonite #3 Sand Pack 0.5" long x 0.5" diameter

BORING: SV-2

TOTAL DEPTH: 5'

2154 Torrance Boulevard, Suite 200

TOTAL DEPT	H: 5	j'				Torrance, Cali					
PR	OJECT I	NFORMATION	1		DRILLING INFORMATION						
JOB NO.: SM LOCATION: Ce SITE ADDRESS: 25 BL LOGGED BY: J.I	00 North Horbank, Cali				DATES DRILLED: DEPTH TO GROUNDWATER: DRILLER: RIG TYPE: METHOD OF DRILLING: SAMPLING METHODS: BORING DIAMETER:	05/25/21 NA ABC Liovin Truck Mounted Geoprok Direct Push Dual tube 2.25"	ole 6600				
DEPTH SAMPLE	(mdd)	BLOW COUNT USCS	SOIL		SOIL TYPE	BORING COMPLETION	DESCRIPTION				
5 - sv-2-5' 10	21.4		SP- SM	3.5" Asphalt/ 4' Light brown to silt	' of Base tan, damp, loose, SAND with som		4" Diameter Well Box Concrete pad Sampling Valve Hyrdated Bentonite Chips 0.25" Diameter Flexible Nylaflow Tubing Dry Granular Bentonite #3 Sand Pack 0.5" long x 0.5" diameter				

BORING: SV-3

2154 Torrance Boulevard, Suite 200

TOTA	L DEPTH:	5	ı					Torrance, Cali	
	PRO	JECT II	NFORM.	ATION			DRILLING	G INFORMATION	20001
PROJECT JOB NO.: LOCATIO SITE ADD LOGGED REVIEWE	SM20 N: NW c RESS: 2500 Burba BY: J.M.	North Ho ank, Calif		Vay	d		DATES DRILLED: DEPTH TO GROUNDWATER: DRILLER: RIG TYPE: METHOD OF DRILLING: SAMPLING METHODS: BORING DIAMETER:	05/25/21 NA ABC Liovin Truck Mounted Geoprok Direct Push Dual tube 2.25"	ole 6600
DEPTH	SAMPLE	PID (mdd)	BLOW	nscs	SOIL		SOIL TYPE	BORING COMPLETION	DESCRIPTION
10 -	SV-3-5'	14.6			SM	3.5" Asphalt/ 4 Brown, moist, li	ose, silty SAND		4" Diameter Well Box Concrete pad Sampling Valve Hyrdated Bentonite Chips 0.25" Diameter Flexible Nylaflow Tubing Dry Granular Bentonite #3 Sand Pack 0.5" long x 0.5" diameter

BORING: SV-4

TOTAL DEPTH: 5'

2154 Torrance Boulevard, Suite 200 Torrance California 90501

TOTAL DEPTH	: 5'					Torrance, Cali	fornia 90501
PRO	JECT INFO	ORMATION			DRILLING	G INFORMATION	
JOB NO.: SM2 LOCATION: SW (SITE ADDRESS: 2500	North Hollywank, California	-	i		DATES DRILLED: DEPTH TO GROUNDWATER: DRILLER: RIG TYPE: METHOD OF DRILLING: SAMPLING METHODS: BORING DIAMETER:	05/25/21 NA ABC Liovin Truck Mounted Geoprob Direct Push Dual tube 2.25"	le 6600
DEPTH SAMPLE	PID (bbm)	COUNT	SOIL		SOIL TYPE	BORING COMPLETION	DESCRIPTION
0 SV-4-5' SV	56.3		SP	3.5" Asphalt/ 4" Tan to light brown	of Base wn, damp, loose, SAND		4" Diameter Well Box Concrete pad Sampling Valve Hyrdated Bentonite Chips 0.25" Diameter Flexible Nylaflow Tubing Dry Granular Bentonite #3 Sand Pack 0.5" long x 0.5" diameter

NOTES:

BORING: SV-5

TOTAL DEPTH: 5'

2154 Torrance Boulevard, Suite 200
Torrance California 90501

TOTAL	DEPTH:	5'						Torrance, Cali	
	PRO	JECT IN	NFORM.	ATION			DRILLIN	G INFORMATION	
PROJECT: JOB NO.: LOCATION: SITE ADDRE LOGGED BY REVIEWED I	SM20 SE co ESS: 2500 Burba	North Ho ank, Calif		Vay	i		DATES DRILLED: DEPTH TO GROUNDWATER: DRILLER: RIG TYPE: METHOD OF DRILLING: SAMPLING METHODS; BORING DIAMETER:	05/25/21 NA ABC Liovin Truck Mounted Geoprob Direct Push Dual tube 2.25"	ole 6600
DEPTH	SAMPLE	PID (ppm)	BLOW	nscs	SOIL		SOIL TYPE	BORING COMPLETION	DESCRIPTION
0	SV-5-5'	31.5			SM	3.5" Asphalt/ 4 Brown, moist, I	oose, silty SAND		4" Diameter Well Box Concrete pad Sampling Valve Hyrdated Bentonite Chips 0.25" Diameter Flexible Nylaflow Tubing Dry Granular Bentonite #3 Sand Pack 0.5" long x 0.5" diameter

NOTES: Page 1 of 1

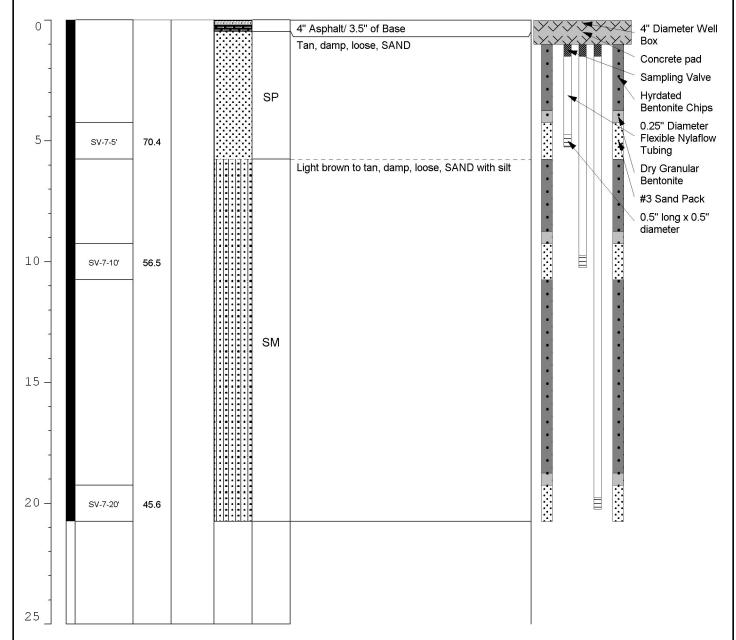
BORING: SV-6

2154 Torrance Boulevard, Suite 200

COMPLETION

TOTAL	DEPTH	: 2	0'				Torrance, California 90501				
	PRO	JECT II	NFORM	ATION	Ī.		DRILLING INFORMATION				
PROJECT:	Marri	ott- Burb	ank				DATES DRILLED:	05/25/21			
JOB NO.:	SM2	0-303682	.1				DEPTH TO GROUNDWATER:	NA			
LOCATION:	Cent	er west o	f propose	d parkin	g area		DRILLER: ABC Liovin				
SITE ADDRE	ss: 2500	North Ho	ollywood V	Vay			RIG TYPE: Truck Mounted Geoproble 6600				
	Burb	ank, Calit	ornia 915	05			METHOD OF DRILLING:	Direct Push			
LOGGED BY	: J.M.						SAMPLING METHODS:	Dual tube			
REVIEWED BY: R. Traylor							BORING DIAMETER: 2.25"				
DEPTH SAMPLE Q Q NO. 1 D D D D D D D D D D D D D D D D D D					SOIL TYPE	BORING	DESCRIPTION				

(ppm COU 0 4" Diameter Well 4" Asphalt/ 4" of Base Dark brown, moist, loose, SAND Concrete pad Sampling Valve Hyrdated SP Bentonite Chips 0.25" Diameter Flexible Nylaflow 5 -SV-6-5' 59.7 Tubing Light brown to tan, damp, loose, SAND with trace Dry Granular gravel Bentonite #3 Sand Pack 0.5" long x 0.5" SP diameter 10 -SV-6-10' 67.6 Tan to gray, damp, loose, SAND 15 SP 20 -SV-6-20' 62.4 25


NOTES: Soil Vapor probes set at 5,10, 20' bgs

BORING: SV-7
TOTAL DEPTH: 20'

2154 Torrance Boulevard, Suite 200
Torrance California 90501

DRILLING INFORMATION				
DATES DRILLED:	05/25/21			
DEPTH TO GROUNDWATER:	NA			
DRILLER:	ABC Liovin			
RIG TYPE:	Truck Mounted Geoproble 6600			
METHOD OF DRILLING:	Direct Push			
SAMPLING METHODS:	Dual tube			
BORING DIAMETER:	2.25"			
SOIL TYPE	BORING DESCRIPTION			
-	DATES DRILLED: DEPTH TO GROUNDWATER: DRILLER: RIG TYPE: METHOD OF DRILLING: SAMPLING METHODS: BORING DIAMETER:			

BORING: SV-8

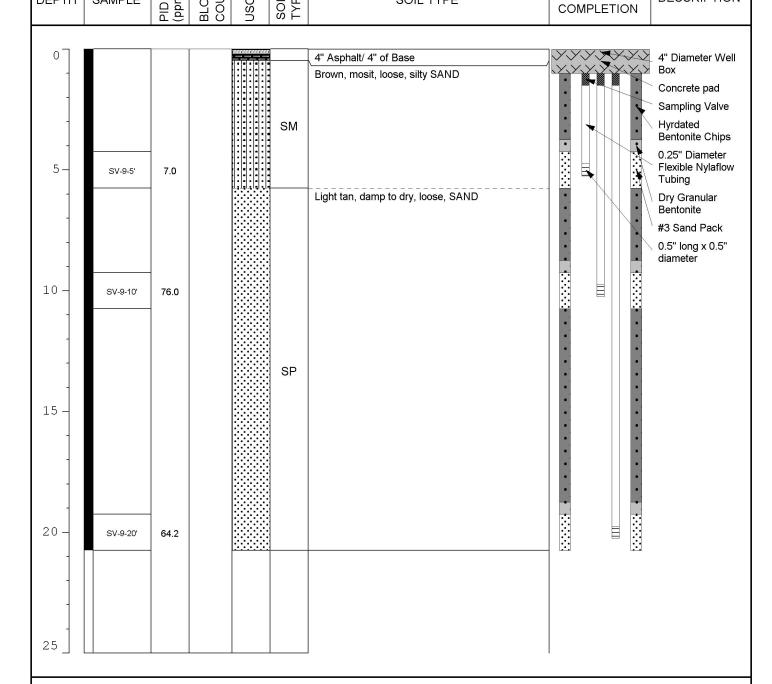
2154 Torrance Boulevard, Suite 200 Torrance California 90501

TOTAL	L DEPTH	: 1	6'			Torrance, California 90501					
	PRO	JECT II	NFORM	ATION		DRILLING INFORMATION					
PROJECT:	Marr	ott- Burb	ank			DATES DRILLED:	05/25/21				
JOB NO.:	SM2)-303682	.1			DEPTH TO GROUNDWATER:	NA				
LOCATION	: SW o	orner of	proposed	parking	area	DRILLER: ABC Liovin					
SITE ADDR	RESS: 2500	North Ho	ollywood V	Vay		RIG TYPE: Truck Mounted Geoproble 6600					
	Burb	ank, Calit	ornia 915	05		METHOD OF DRILLING:	Direct Push				
LOGGED B	BY: J.M.					SAMPLING METHODS:	Dual tube				
REVIEWED	BY: R. Tr	aylor				BORING DIAMETER:	RING DIAMETER: 2.25"				
DEPTH	SAMPLE	D (md	MO-	scs	OIL	SOIL TYPE	BORING COMPLETION	DESCRIPTION			

0 4" Asphalt/ 4" of Base 4" Diameter Well Brown, moist, loose, SAND Concrete pad Sampling Valve SP-Hyrdated SM Bentonite Chips 0.25" Diameter Flexible Nylaflow 5 -SV-8-5' 70.4 Tubing Gray to tan, damp, loose, SAND with trace gravel Dry Granular Bentonite #3 Sand Pack 0.5" long x 0.5" diameter 10 -SV-8-10' 56.5 SP 15

NOTES: Soil Vapor probes set at 5,10, 15' bgs

20 -


25

BORING: SV-9
TOTAL DEPTH: 20'

2154 Torrance Boulevard, Suite 200
Torrance, California 90501


						Torrance, California 90501					
	PRO	JECT IN	NFORM	ATION	Ĺ	DRILLING INFORMATION					
PROJECT:	Marrio	ott- Burba	ank			DATES DRILLED:	05/25/21				
JOB NO.:	SM20	-303682	.1			DEPTH TO GROUNDWATER:	NA				
LOCATION:	SE co	orner of p	roposed	parking a	area	DRILLER:	ABC Liovin				
SITE ADDRES	ss: 2500	North Ho	llywood \	Vay		RIG TYPE:	Truck Mounted Geoproble 6600				
	Burba	ınk, Calif	ornia 915	05		METHOD OF DRILLING:	Direct Push				
LOGGED BY:	J.M.					SAMPLING METHODS:	Dual tube				
REVIEWED B	sy: R. Tra	aylor				BORING DIAMETER: 2.25"					
DEPTH S	SAMPLE	m)	OW	SCS	OIL 'PE	SOIL TYPE	BORING	DESCRIPTION			

NOTES: Soil Vapor probes set at 5,10, 20' bgs

APPENDIX B: LABORATORY ANALYTICAL REPORTS

01 June 2021

Bruce Eppler
Partner Engineering & Science, Inc.--Tor
2154 Torrance Blvd., Suite 200
Torrance, CA 90501

RE: Marriott- Burbank

Enclosed are the results of analyses for samples received by the laboratory on 05/26/21 12:50. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi

Project Manager

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Torrance CA, 90501

Project Number: SM20-303682.1 Project Manager: Bruce Eppler

Reported: 06/01/21 14:52

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV-1-5	T211739-01	Soil	05/25/21 13:20	05/26/21 12:50
SV-2-5	T211739-02	Soil	05/25/21 13:54	05/26/21 12:50
SV-3-5	T211739-03	Soil	05/25/21 14:15	05/26/21 12:50
SV-4-5	T211739-04	Soil	05/25/21 14:55	05/26/21 12:50
SV-5-5	T211739-05	Soil	05/25/21 12:49	05/26/21 12:50
SV-6-5	T211739-06	Soil	05/25/21 08:10	05/26/21 12:50
SV-6-10	T211739-07	Soil	05/25/21 08:15	05/26/21 12:50
SV-6-20	T211739-08	Soil	05/25/21 08:50	05/26/21 12:50
SV-7-5	T211739-09	Soil	05/25/21 11:50	05/26/21 12:50
SV-7-10	T211739-10	Soil	05/25/21 11:10	05/26/21 12:50
SV-7-20	T211739-11	Soil	05/25/21 11:15	05/26/21 12:50
SV-8-5	T211739-12	Soil	05/25/21 09:27	05/26/21 12:50
SV-8-10	T211739-13	Soil	05/25/21 09:33	05/26/21 12:50
SV-9-5	T211739-14	Soil	05/25/21 10:29	05/26/21 12:50
SV-9-10	T211739-15	Soil	05/25/21 10:34	05/26/21 12:50
SV-9-20	T211739-16	Soil	05/25/21 10:36	05/26/21 12:50

SunStar Laboratories, Inc.

H

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Torrance CA, 90501

Project Number: SM20-303682.1 Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

DETECTIONS SUMMARY

Sample ID: SV-1-5 Laboratory ID: T211739-01

No Results Detected

Sample ID: SV-2-5 Laboratory ID: T211739-02

No Results Detected

Sample ID: SV-3-5 Laboratory ID: T211739-03

Analyte Result Limit Units Method

Benzene **0.0024** 0.0022 mg/kg EPA 8260B/5035

Reporting

Sample ID: SV-4-5 Laboratory ID: T211739-04

No Results Detected

Sample ID: SV-5-5 Laboratory ID: T211739-05

No Results Detected

Sample ID: SV-6-5 Laboratory ID: T211739-06

No Results Detected

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Notes

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200

Torrance CA, 90501

Project: Marriott- Burbank

Project Number: SM20-303682.1 Project Manager: Bruce Eppler Reported:

06/01/21 14:52

Sample ID: SV-6-10 Laboratory ID: T211739-07

Reporting

Analyte Benzene Result 0.0052 Limit 0.0025

Units mg/kg Method

EPA 8260B/5035

Notes

Sample ID: SV-6-20

Laboratory ID:

T211739-08

No Results Detected

Sample ID: SV-7-5

Laboratory ID:

T211739-09

No Results Detected

Sample ID:

SV-7-10

Laboratory ID:

T211739-10

No Results Detected

Sample ID:

SV-7-20

Laboratory ID:

T211739-11

No Results Detected

Sample ID:

SV-8-5

Laboratory ID:

T211739-12

No Results Detected

Sample ID:

SV-8-10

Laboratory ID:

T211739-13

No Results Detected

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SV-9-5

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200

Torrance CA, 90501

Sample ID:

Project: Marriott- Burbank

Laboratory ID:

Project Number: SM20-303682.1 Project Manager: Bruce Eppler **Reported:** 06/01/21 14:52

No Results Detected

Sample ID: SV-9-10

Laboratory ID:

T211739-15

T211739-14

No Results Detected

Sample ID: SV-9-20

Laboratory ID:

T211739-16

No Results Detected

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Torrance CA, 90501

Project: Marriott- Burbank
Project Number: SM20-303682.1

Reported:

Project Manager: Bruce Eppler

06/01/21 14:52

SV-1-5 T211739-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
Bromochloromethane	ND	0.0025	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0025	"	"	"	"	"	"	
Bromoform	ND	0.0025	"	"	"	"	"	"	
Bromomethane	ND	0.0025	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0025	"	"	"	"	"	"	
Chlorobenzene	ND	0.0025	"	"	"	"	"	"	
Chloroethane	ND	0.0025	"	"	"	"	"	"	
Chloroform	ND	0.0025	"	"	"	"	"	"	
Chloromethane	ND	0.0025	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0050	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0025	"	"	"	"	"	"	
Dibromomethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0025	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0025	"	,,	,,	"	"	,,	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank
Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

SV-1-5 T211739-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,1-Dichloropropene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0025	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0025	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0025	"	"	"	"	"	"	
Methylene chloride	ND	0.010	"	"	"	"	"	"	
Naphthalene	ND	0.0025	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0025	"	"	"	"	"	"	
Styrene	ND	0.0025	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
Trichloroethene	ND	0.0025	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
Vinyl chloride	ND	0.0025	"	"	"	"	"	"	
Benzene	ND	0.0025	"	"	"	"	"	"	
Toluene	ND	0.0025	"	"	"	"	"	"	
Ethylbenzene	ND	0.0025	"	"	"	"	"	"	
m,p-Xylene	ND	0.0050	"	"	"	"	"	"	
o-Xylene	ND	0.0025	"	"	"	"	"	"	
Surrogate: Toluene-d8		103 %	76.1	-127	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	85.9	-114	"	"	"	"	
Surrogate: Dibromofluoromethane		107 %	77.8	-142	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project Number: SM20-303682.1
Project Manager: Bruce Eppler

Reported: 06/01/21 14:52

SV-1-5 T211739-01 (Soil)

Reporting
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1 Reported:
Torrance CA, 90501 Project Manager: Bruce Eppler 06/01/21 14:52

Reporting

SV-2-5 T211739-02 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA M	ethod 8260B								
Bromobenzene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/28/21	EPA 8260B/5035	
Bromochloromethane	ND	0.0025	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0025	"	"	"	"	"	"	
Bromoform	ND	0.0025	"	"	"	"	"	"	
Bromomethane	ND	0.0025	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0025	"	"	"	"	"	"	
Chlorobenzene	ND	0.0025	"	"	"	"	"	"	
Chloroethane	ND	0.0025	"	"	"	"	"	"	
Chloroform	ND	0.0025	"	"	"	"	"	"	
Chloromethane	ND	0.0025	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0050	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0025	"	"	"	"	"	"	
Dibromomethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0025	,,	,,	,,	,,	,,	"	

ND

ND

0.0025

0.0025

SunStar Laboratories, Inc.

1,3-Dichloropropane

2,2-Dichloropropane

H

Partner Engineering & Science, Inc.--Tor

Project: Marriott-Burbank 2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1 Torrance CA, 90501 Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

SV-2-5 T211739-02 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,1-Dichloropropene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/28/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0025	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0025	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0025	"	"	"	"	"	"	
Methylene chloride	ND	0.010	"	"	"	"	"	"	
Naphthalene	ND	0.0025	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0025	"	"	"	"	"	"	
Styrene	ND	0.0025	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
Trichloroethene	ND	0.0025	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
Vinyl chloride	ND	0.0025	"	"	"	"	"	"	
Benzene	ND	0.0025	"	"	"	"	"	"	
Toluene	ND	0.0025	"	"	"	"	"	"	
Ethylbenzene	ND	0.0025	"	"	"	"	"	"	
m,p-Xylene	ND	0.0050	"	"	"	"	"	"	
o-Xylene	ND	0.0025	"	"	"	"	"	"	
Surrogate: Toluene-d8		104 %	76.1-	-127	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	85.9	-114	"	"	"	"	
Surrogate: Dibromofluoromethane		105 %	77.8-		"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Project: Marriott-Burbank Project Number: SM20-303682.1

Reported:

Torrance CA, 90501

Project Manager: Bruce Eppler

06/01/21 14:52

SV-2-5 T211739-02 (Soil)

Reporting
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number: SM20-303682.1Reported:Torrance CA, 90501Project Manager: Bruce Eppler06/01/21 14:52

SV-3-5 T211739-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA M	ethod 8260B								
Bromobenzene	ND	0.0022	mg/kg	1	1052729	05/27/21	05/28/21	EPA 8260B/5035	
Bromochloromethane	ND	0.0022	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0022	"	"	"	"	"	"	
Bromoform	ND	0.0022	"	"	"	"	"	"	
Bromomethane	ND	0.0022	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0022	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0022	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0022	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0022	"	"	"	"	"	"	
Chlorobenzene	ND	0.0022	"	"	"	"	"	"	
Chloroethane	ND	0.0022	"	"	"	"	"	"	
Chloroform	ND	0.0022	"	"	"	"	"	"	
Chloromethane	ND	0.0022	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0022	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0022	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0022	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0043	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0022	"	"	"	"	"	"	
Dibromomethane	ND	0.0022	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0022	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0022	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0022	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0022	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0022	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0022	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0022	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0022	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0022	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0022	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0022	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0022	"	"	"	"	"	"	

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number:SM20-303682.1Reported:Torrance CA, 90501Project Manager:Bruce Eppler06/01/21 14:52

SV-3-5 T211739-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
1,1-Dichloropropene	ND	0.0022	mg/kg	1	1052729	05/27/21	05/28/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0022	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0022	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0022	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0022	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0022	"	"	"	"	"	"	
Methylene chloride	ND	0.0087	"	"	"	"	"	"	
Naphthalene	ND	0.0022	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0022	"	"	"	"	"	"	
Styrene	ND	0.0022	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0022	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0022	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0022	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0022	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0022	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0022	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0022	"	"	"	"	"	"	
Trichloroethene	ND	0.0022	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0022	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0022	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0022	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0022	"	"	"	"	"	"	
Vinyl chloride	ND	0.0022	"	"	"	"	"	"	
Benzene	0.0024	0.0022	"	"	"	"	"	"	
Toluene	ND	0.0022	"	"	"	"	"	"	
Ethylbenzene	ND	0.0022	"	"	"	"	"	"	
m,p-Xylene	ND	0.0043	"	"	"	"	"	"	
o-Xylene	ND	0.0022	"	"	"	"	"	"	
Surrogate: Toluene-d8		103 %	76.1	-127	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	85.9	-114	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	77.8	-142	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Torrance CA, 90501

Project: Marriott- Burbank Project Number: SM20-303682.1

Reported:

Project Manager: Bruce Eppler

06/01/21 14:52

SV-3-5 T211739-03 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1
Torrance CA, 90501 Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

SV-4-5 T211739-04 (Soil)

Project: Marriott-Burbank

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar	Lal	boratories,	Inc.
---------	-----	-------------	------

Volatile Organic Compounds by EPA Bromobenzene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/28/21	EPA 8260B/5035	M-0
Bromochloromethane	ND	0.0025	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0025	"	"	"	"	"	"	
Bromoform	ND	0.0025	"	"	"	"	"	"	
Bromomethane	ND	0.0025	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0025	"	"	"	"	"	"	
Chlorobenzene	ND	0.0025	"	"	"	"	"	"	
Chloroethane	ND	0.0025	"	"	"	"	"	"	
Chloroform	ND	0.0025	"	"	"	"	"	"	
Chloromethane	ND	0.0025	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0050	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0025	"	"	"	"	"	"	
Dibromomethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0025	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"	

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project Number: SM20-303682.1
Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

SV-4-5 T211739-04 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	A Method 8260B								M-04
1,1-Dichloropropene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/28/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0025	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0025	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0025	"	"	"	"	"	"	
Methylene chloride	ND	0.010	"	"	"	"	"	"	
Naphthalene	ND	0.0025	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0025	"	"	"	"	"	"	
Styrene	ND	0.0025	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
Trichloroethene	ND	0.0025	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
Vinyl chloride	ND	0.0025	"	"	"	"	"	"	
Benzene	ND	0.0025	"	"	"	"	"	"	
Toluene	ND	0.0025	"	"	"	"	"	"	
Ethylbenzene	ND	0.0025	"	"	"	"	"	"	
m,p-Xylene	ND	0.0050	"	"	"	"	"	"	
o-Xylene	ND	0.0025	"	"	"	"	"	"	
Surrogate: Toluene-d8		99.9 %	76.1-1	27	"	"	"	"	

99.0 %

116 %

85.9-114

77.8-142

SunStar Laboratories, Inc.

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Project: Marriott- Burbank Project Number: SM20-303682.1

Reported:

Torrance CA, 90501

Project Manager: Bruce Eppler

06/01/21 14:52

SV-4-5 T211739-04 (Soil)

Reporting
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number: SM20-303682.1Reported:Torrance CA, 90501Project Manager: Bruce Eppler06/01/21 14:52

Reporting

SV-5-5 T211739-05 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	0.0022	mg/kg	1	1052729	05/27/21	05/28/21	EPA 8260B/5035	
Bromochloromethane	ND	0.0022	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0022	"	"	"	"	"	"	
Bromoform	ND	0.0022	"	"	"	"	"	"	
Bromomethane	ND	0.0022	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0022	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0022	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0022	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0022	"	"	"	"	"	"	
Chlorobenzene	ND	0.0022	"	"	"	"	"	"	
Chloroethane	ND	0.0022	"	"	"	"	"	"	
Chloroform	ND	0.0022	"	"	"	"	"	"	
Chloromethane	ND	0.0022	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0022	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0022	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0022	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0045	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0022	"	"	"	"	"	"	
Dibromomethane	ND	0.0022	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0022	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0022	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0022	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0022	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0022	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0022	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0022	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0022	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0022	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0022	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0022	"	"	"	"	"	"	
* *									

ND

0.0022

SunStar Laboratories, Inc.

2,2-Dichloropropane

H

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank
Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

SV-5-5 T211739-05 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,1-Dichloropropene	ND	0.0022	mg/kg	1	1052729	05/27/21	05/28/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0022	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0022	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0022	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0022	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0022	"	"	"	"	"	"	
Methylene chloride	ND	0.0090	"	"	"	"	"	"	
Naphthalene	ND	0.0022	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0022	"	"	"	"	"	"	
Styrene	ND	0.0022	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0022	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0022	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0022	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0022	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0022	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0022	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0022	"	"	"	"	"	"	
Trichloroethene	ND	0.0022	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0022	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0022	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0022	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0022	"	"	"	"	"	"	
Vinyl chloride	ND	0.0022	"	"	"	"	"	"	
Benzene	ND	0.0022	"	"	"	"	"	"	
Toluene	ND	0.0022	"	"	"	"	"	"	
Ethylbenzene	ND	0.0022	"	"	"	"	"	"	
m,p-Xylene	ND	0.0045	"	"	"	"	"	"	
o-Xylene	ND	0.0022	"	"	"	"	"	"	
Surrogate: Toluene-d8		99.6 %	76.1-	-127	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	85.9	-114	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	77.8-	-142	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Project Number: SM20-303682.1

Reported:

Torrance CA, 90501

Project Manager: Bruce Eppler

06/01/21 14:52

SV-5-5 T211739-05 (Soil)

Project: Marriott-Burbank

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1 Reported:
Torrance CA, 90501 Project Manager: Bruce Eppler 06/01/21 14:52

SV-6-5 T211739-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA I	Method 8260B								
Bromobenzene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
Bromochloromethane	ND	0.0025	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0025	"	"	"	"	"	"	
Bromoform	ND	0.0025	"	"	"	"	"	"	
Bromomethane	ND	0.0025	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0025	"	"	"	"	"	"	
Chlorobenzene	ND	0.0025	"	"	"	"	"	"	
Chloroethane	ND	0.0025	"	"	"	"	"	"	
Chloroform	ND	0.0025	"	"	"	"	"	"	
Chloromethane	ND	0.0025	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0050	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0025	"	"	"	"	"	"	
Dibromomethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0025	"	"	"	"	"	,,	
1,1-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	,,	
1,2-Dichloropropane	ND	0.0025	,,	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0025	,,	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0025		,,	,,	,,	"	"	

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number: SM20-303682.1Reported:Torrance CA, 90501Project Manager: Bruce Eppler06/01/21 14:52

SV-6-5 T211739-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
1,1-Dichloropropene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0025	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0025	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0025	"	"	"	"	"	"	
Methylene chloride	ND	0.010	"	"	"	"	"	"	
Naphthalene	ND	0.0025	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0025	"	"	"	"	"	"	
Styrene	ND	0.0025	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
Trichloroethene	ND	0.0025	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
Vinyl chloride	ND	0.0025	"	"	"	"	"	"	
Benzene	ND	0.0025	"	"	"	"	"	"	
Toluene	ND	0.0025	"	"	"	"	"	"	
Ethylbenzene	ND	0.0025	"	"	"	"	"	"	
m,p-Xylene	ND	0.0050	"	"	"	"	"	"	
o-Xylene	ND	0.0025	"	"	"	"	"	"	
Surrogate: Toluene-d8		104 %	76.1	-127	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	85.9	-114	"	"	"	"	
Surrogate: Dibromofluoromethane		108 %	77.8	-142	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Project Number: SM20-303682.1 Torrance CA, 90501

Reported:

Project Manager: Bruce Eppler

06/01/21 14:52

SV-6-5 T211739-06 (Soil)

Project: Marriott-Burbank

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank
Project Number: SM20-303682.1
Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

SV-6-10 T211739-07 (Soil)

Analyte Result Limit Units Dilution Batch Prepar SunStar Laboratories, Inc. Volatile Organic Compounds by EPA Method 8260B Bromobenzene ND 0.0025 mg/kg 1 1052729 05/27/2	•	EPA 8260B/5035	Notes
Volatile Organic Compounds by EPA Method 8260B	"		
	"		
Bromobenzene ND 0.0025 mg/kg 1 1052729 05/27/2	"		
Bromochloromethane ND 0.0025 " " " "	,,	"	
Bromodichloromethane ND 0.0025 " " " "		"	
Bromoform ND 0.0025 " " " "	"	"	
Bromomethane ND 0.0025 " " " "	"	"	
n-Butylbenzene ND 0.0025 " " "	"	"	
sec-Butylbenzene ND 0.0025 " " " "	"	"	
tert-Butylbenzene ND 0.0025 " " "	"	"	
Carbon tetrachloride ND 0.0025 " " " "	"	"	
Chlorobenzene ND 0.0025 " " " "	"	"	
Chloroethane ND 0.0025 " " " "	"	"	
Chloroform ND 0.0025 " " " "	"	"	
Chloromethane ND 0.0025 " " " "	"	"	
2-Chlorotoluene ND 0.0025 " " " "	"	"	
4-Chlorotoluene ND 0.0025 " " " "	"	"	
Dibromochloromethane ND 0.0025 " " " "	"	"	
1,2-Dibromo-3-chloropropane ND 0.0050 " " " "	"	"	
1,2-Dibromoethane (EDB) ND 0.0025 " " " "	"	"	
Dibromomethane ND 0.0025 " " " "	"	"	
1,2-Dichlorobenzene ND 0.0025 " " " "	"	"	
1,3-Dichlorobenzene ND 0.0025 " " " "	"	"	
1,4-Dichlorobenzene ND 0.0025 " " " "	"	"	
Dichlorodifluoromethane ND 0.0025 " " " "	"	"	
1,1-Dichloroethane ND 0.0025 " " " "	"	"	
1,2-Dichloroethane ND 0.0025 " " " "	"	"	
1,1-Dichloroethene ND 0.0025 " " " "	"	"	
cis-1,2-Dichloroethene ND 0.0025 " " " "	"	"	
trans-1,2-Dichloroethene ND 0.0025 " " " "	"	,,	
1,2-Dichloropropane ND 0.0025 " " " "	"	"	
1,3-Dichloropropane ND 0.0025 " " " "	"	"	
2,2-Dichloropropane ND 0.0025 " " " "	"	"	
2,2 Diemotopropune 11D 0.0025			

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

Project: Marriott-Burbank 2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1 Torrance CA, 90501 Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

SV-6-10 T211739-07 (Soil)

Reporting

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,1-Dichloropropene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0025	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0025	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0025	"	"	"	"	"	"	
Methylene chloride	ND	0.010	"	"	"	"	"	"	
Naphthalene	ND	0.0025	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0025	"	"	"	"	"	"	
Styrene	ND	0.0025	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
Trichloroethene	ND	0.0025	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
Vinyl chloride	ND	0.0025	"	"	"	"	"	"	
Benzene	0.0052	0.0025	"	"	"	"	"	"	
Toluene	ND	0.0025	"	"	"	"	"	"	
Ethylbenzene	ND	0.0025	"	"	"	"	"	"	
m,p-Xylene	ND	0.0050	"	"	"	"	"	"	
o-Xylene	ND	0.0025	"	"	"	"	"	"	
Surrogate: Toluene-d8		105 %	76.1-	-127	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	85.9	-114	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %	77.8-	-142	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank
Project Number: SM20-303682.1

Reported:

06/01/21 14:52

SV-6-10 T211739-07 (Soil)

Project Manager: Bruce Eppler

Reporting
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1
Torrance CA, 90501 Project Manager: Bruce Eppler

Reported:

Bruce Eppler 06/01/21 14:52

SV-6-20 T211739-08 (Soil)

Reporting

Project: Marriott-Burbank

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	0.12	mg/kg	50	1052729	05/27/21	05/28/21	EPA 8260B/5035	R-07
Bromochloromethane	ND	0.12	"	"	"	"	"	"	R-07
Bromodichloromethane	ND	0.12	"	"	"	"	"	"	R-07
Bromoform	ND	0.12	"	"	"	"	"	"	R-07
Bromomethane	ND	0.12	"	"	"	"	"	"	R-07
n-Butylbenzene	ND	0.12	"	"	"	"	"	"	R-07
sec-Butylbenzene	ND	0.12	"	"	"	"	"	"	R-07
tert-Butylbenzene	ND	0.12	"	"	"	"	"	"	R-07
Carbon tetrachloride	ND	0.12	"	"	"	"	"	"	R-07
Chlorobenzene	ND	0.12	"	"	"	"	"	"	R-07
Chloroethane	ND	0.12	"	"	"	"	"	"	R-07
Chloroform	ND	0.12	"	"	"	"	"	"	R-07
Chloromethane	ND	0.12	"	"	"	"	"	"	R-07
2-Chlorotoluene	ND	0.12	"	"	"	"	"	"	R-07
4-Chlorotoluene	ND	0.12	"	"	"	"	"	"	R-07
Dibromochloromethane	ND	0.12	"	"	"	"	"	"	R-07
1,2-Dibromo-3-chloropropane	ND	0.25	"	"	"	"	"	"	R-07
1,2-Dibromoethane (EDB)	ND	0.12	"	"	"	"	"	"	R-07
Dibromomethane	ND	0.12	"	"	"	"	"	"	R-07
1,2-Dichlorobenzene	ND	0.12	"	"	"	"	"	"	R-07
1,3-Dichlorobenzene	ND	0.12	"	"	"	"	"	"	R-07
1,4-Dichlorobenzene	ND	0.12	"	"	"	"	"	"	R-07
Dichlorodifluoromethane	ND	0.12	"	"	"	"	"	"	R-07
1,1-Dichloroethane	ND	0.12	"	"	"	"	"	"	R-07
1,2-Dichloroethane	ND	0.12	"	"	"	"	"	"	R-07
1,1-Dichloroethene	ND	0.12	"	"	"	"	"	"	R-07
cis-1,2-Dichloroethene	ND	0.12	"	"	"	"	"	"	R-07
trans-1,2-Dichloroethene	ND	0.12	"	"	"	"	"	"	R-07
1,2-Dichloropropane	ND	0.12	"	"	"	"	"	"	R-07
1,3-Dichloropropane	ND	0.12	"	"	"	"	"	"	R-07
2,2-Dichloropropane	ND	0.12	"	"	"	"	"	,,	R-07

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank
Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

SV-6-20 T211739-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,1-Dichloropropene	ND	0.12	mg/kg	50	1052729	05/27/21	05/28/21	EPA 8260B/5035	R-07
cis-1,3-Dichloropropene	ND	0.12	"	"	"	"	"	"	R-07
trans-1,3-Dichloropropene	ND	0.12	"	"	"	"	"	"	R-07
Hexachlorobutadiene	ND	0.12	"	"	"	"	"	"	R-07
Isopropylbenzene	ND	0.12	"	"	"	"	"	"	R-07
p-Isopropyltoluene	ND	0.12	"	"	"	"	"	"	R-07
Methylene chloride	ND	0.50	"	"	"	"	"	"	R-07
Naphthalene	ND	0.12	"	"	"	"	"	"	R-07
n-Propylbenzene	ND	0.12	"	"	"	"	"	"	R-07
Styrene	ND	0.12	"	"	"	"	"	"	R-07
1,1,2,2-Tetrachloroethane	ND	0.12	"	"	"	"	"	"	R-07
1,1,1,2-Tetrachloroethane	ND	0.12	"	"	"	"	"	"	R-07
Tetrachloroethene	ND	0.12	"	"	"	"	"	"	R-07
1,2,3-Trichlorobenzene	ND	0.12	"	"	"	"	"	"	R-07
1,2,4-Trichlorobenzene	ND	0.12	"	"	"	"	"	"	R-07
1,1,2-Trichloroethane	ND	0.12	"	"	"	"	"	"	R-07
1,1,1-Trichloroethane	ND	0.12	"	"	"	"	"	"	R-07
Trichloroethene	ND	0.12	"	"	"	"	"	"	R-07
Trichlorofluoromethane	ND	0.12	"	"	"	"	"	"	R-07
1,2,3-Trichloropropane	ND	0.12	"	"	"	"	"	"	R-07
1,3,5-Trimethylbenzene	ND	0.12	"	"	"	"	"	"	R-07
1,2,4-Trimethylbenzene	ND	0.12	"	"	"	"	"	"	R-07
Vinyl chloride	ND	0.12	"	"	"	"	"	"	R-07
Benzene	ND	0.12	"	"	"	"	"	"	R-07
Toluene	ND	0.12	"	"	"	"	"	"	R-07
Ethylbenzene	ND	0.12	"	"	"	"	"	"	R-07
m,p-Xylene	ND	0.25	"	"	"	"	"	"	R-07
o-Xylene	ND	0.12	"	"	"	"	"	"	R-07
Surrogate: Toluene-d8		102 %	76.1-	-127	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	85.9	-114	"	"	"	"	
Surrogate: Dibromofluoromethane		97.6 %	77.8-		"	"	"	"	

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Project: Marriott- Burbank Project Number: SM20-303682.1

Reported:

Torrance CA, 90501

Project Manager: Bruce Eppler

06/01/21 14:52

SV-6-20 T211739-08 (Soil)

Reporting
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number: SM20-303682.1Reported:Torrance CA, 90501Project Manager: Bruce Eppler06/01/21 14:52

SV-7-5 T211739-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
Bromochloromethane	ND	0.0025	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0025	"	"	"	"	"	"	
Bromoform	ND	0.0025	"	"	"	"	"	"	
Bromomethane	ND	0.0025	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0025	"	"	"	"	"	"	
Chlorobenzene	ND	0.0025	"	"	"	"	"	"	
Chloroethane	ND	0.0025	"	"	"	"	"	"	
Chloroform	ND	0.0025	"	"	"	"	"	"	
Chloromethane	ND	0.0025	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0050	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0025	"	"	"	"	"	"	
Dibromomethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0025	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"	

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank
Project Number: SM20-303682.1

Reported: 06/01/21 14:52

SV-7-5 T211739-09 (Soil)

Project Manager: Bruce Eppler

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,1-Dichloropropene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0025	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0025	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0025	"	"	"	"	"	"	
Methylene chloride	ND	0.010	"	"	"	"	"	"	
Naphthalene	ND	0.0025	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0025	"	"	"	"	"	"	
Styrene	ND	0.0025	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
Trichloroethene	ND	0.0025	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
Vinyl chloride	ND	0.0025	"	"	"	"	"	"	
Benzene	ND	0.0025	"	"	"	"	"	"	
Toluene	ND	0.0025	"	"	"	"	"	"	
Ethylbenzene	ND	0.0025	"	"	"	"	"	"	
m,p-Xylene	ND	0.0050	"	"	"	"	"	"	
o-Xylene	ND	0.0025	"	"	"	"	"	"	
Surrogate: Toluene-d8		101 %	76.1	-127	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	85.9	-114	"	"	"	"	
Surrogate: Dibromofluoromethane		110 %	77.8	-142	"	"	"	"	
· ·									

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank
Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

SV-7-5 T211739-09 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number: SM20-303682.1Reported:Torrance CA, 90501Project Manager: Bruce Eppler06/01/21 14:52

Reporting

SV-7-10 T211739-10 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	0.0028	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
Bromochloromethane	ND	0.0028	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0028	"	"	"	"	"	"	
Bromoform	ND	0.0028	"	"	"	"	"	"	
Bromomethane	ND	0.0028	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0028	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0028	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0028	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0028	"	"	"	"	"	"	
Chlorobenzene	ND	0.0028	"	"	"	"	"	"	
Chloroethane	ND	0.0028	"	"	"	"	"	"	
Chloroform	ND	0.0028	"	"	"	"	"	"	
Chloromethane	ND	0.0028	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0028	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0028	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0028	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0056	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0028	"	"	"	"	"	"	
Dibromomethane	ND	0.0028	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0028	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0028	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0028	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0028	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0028	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0028	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0028	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0028	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0028	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0028	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0028	"	"	"	"	"	"	

ND

0.0028

SunStar Laboratories, Inc.

2,2-Dichloropropane

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1
Torrance CA, 90501 Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

SV-7-10 T211739-10 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,1-Dichloropropene	ND	0.0028	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0028	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0028	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0028	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0028	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0028	"	"	"	"	"	"	
Methylene chloride	ND	0.011	"	"	"	"	"	"	
Naphthalene	ND	0.0028	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0028	"	"	"	"	"	"	
Styrene	ND	0.0028	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0028	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0028	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0028	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0028	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0028	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0028	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0028	"	"	"	"	"	"	
Trichloroethene	ND	0.0028	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0028	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0028	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0028	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0028	"	"	"	"	"	"	
Vinyl chloride	ND	0.0028	"	"	"	"	"	"	
Benzene	ND	0.0028	"	"	"	"	"	,,	
Toluene	ND	0.0028	"	"	"	"	"	"	
Ethylbenzene	ND	0.0028	"	"	"	"	"	•	
m,p-Xylene	ND	0.0056	"	"	"	"	"	•	
o-Xylene	ND	0.0028	"	"	"	"	"	"	
Surrogate: Toluene-d8		102 %	76.1-	-127	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.2 %	85.9-	-114	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %	77.8-		"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Torrance CA, 90501

Project Number: SM20-303682.1

Reported:

Project Manager: Bruce Eppler

06/01/21 14:52

SV-7-10 T211739-10 (Soil)

Project: Marriott-Burbank

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number: SM20-303682.1Reported:Torrance CA, 90501Project Manager: Bruce Eppler06/01/21 14:52

SV-7-20 T211739-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
Bromochloromethane	ND	0.0025	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0025	"	"	"	"	"	"	
Bromoform	ND	0.0025	"	"	"	"	"	"	
Bromomethane	ND	0.0025	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0025	"	"	"	"	"	"	
Chlorobenzene	ND	0.0025	"	"	"	"	"	"	
Chloroethane	ND	0.0025	"	"	"	"	"	"	
Chloroform	ND	0.0025	"	"	"	"	"	"	
Chloromethane	ND	0.0025	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0050	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0025	"	"	"	"	"	"	
Dibromomethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0025	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"	

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Torrance CA, 90501

Analyte

Project Number: SM20-303682.1
Project Manager: Bruce Eppler

Reported:

Notes

06/01/21 14:52

Method

Analyzed

SV-7-20 T211739-11 (Soil)

Units

Dilution

Batch

Prepared

Reporting

Limit

Result

Tillaryte	Result	Limit	Cints	Dilution	Daten	Trepared	Tillaryzea	Wiethod	110103
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,1-Dichloropropene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0025	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0025	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0025	"	"	"	"	"	"	
Methylene chloride	ND	0.010	"	"	"	"	"	"	
Naphthalene	ND	0.0025	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0025	"	"	"	"	"	"	
Styrene	ND	0.0025	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
Trichloroethene	ND	0.0025	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
Vinyl chloride	ND	0.0025	"	"	"	"	"	"	
Benzene	ND	0.0025	"	"	"	"	"	"	
Toluene	ND	0.0025	"	"	"	"	"	"	
Ethylbenzene	ND	0.0025	"	"	"	"	"	"	
m,p-Xylene	ND	0.0050	"	"	"	"	"	"	
o-Xylene	ND	0.0025	"	"	"	"	"	"	

104 %

101 %

112 %

76.1-127

85.9-114

77.8-142

SunStar Laboratories, Inc.

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Project: Marriott- Burbank Project Number: SM20-303682.1

Reported:

Torrance CA, 90501

Project Manager: Bruce Eppler

06/01/21 14:52

SV-7-20 T211739-11 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number: SM20-303682.1Reported:Torrance CA, 90501Project Manager: Bruce Eppler06/01/21 14:52

SV-8-5 T211739-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
Bromochloromethane	ND	0.0025	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0025	"	"	"	"	"	"	
Bromoform	ND	0.0025	"	"	"	"	"	"	
Bromomethane	ND	0.0025	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0025	"	"	"	"	"	"	
Chlorobenzene	ND	0.0025	"	"	"	"	"	"	
Chloroethane	ND	0.0025	"	"	"	"	"	"	
Chloroform	ND	0.0025	"	"	"	"	"	"	
Chloromethane	ND	0.0025	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0050	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0025	"	"	"	"	"	"	
Dibromomethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0025	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"	

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501

Analyte

Project: Marriott-Burbank
Project Number: SM20-303682.1

Reported: 06/01/21 14:52

Method

Notes

Project Manager: Bruce Eppler

Reporting

Limit

Result

ND

0.0025 97.2 %

99.6 %

111 %

76.1-127

85.9-114

77.8-142

SV-8-5 T211739-12 (Soil)

Units

Dilution

Batch

Prepared

Analyzed

		SunStar L	aboratorie	s, Inc.							
Volatile Organic Compounds by EPA Method 8260B											
1,1-Dichloropropene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035			
cis-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"			
Hexachlorobutadiene	ND	0.0025	"	"	"	"	"	"			
Isopropylbenzene	ND	0.0025	"	"	"	"	"	"			
p-Isopropyltoluene	ND	0.0025	"	"	"	"	"	"			
Methylene chloride	ND	0.010	"	"	"	"	"	"			
Naphthalene	ND	0.0025	"	"	"	"	"	"			
n-Propylbenzene	ND	0.0025	"	"	"	"	"	"			
Styrene	ND	0.0025	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"			
Tetrachloroethene	ND	0.0025	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	0.0025	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	0.0025	"	"	"	"	"	"			
Trichloroethene	ND	0.0025	"	"	"	"	"	"			
Trichlorofluoromethane	ND	0.0025	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	0.0025	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"			
Vinyl chloride	ND	0.0025	"	"	"	"	"	"			
Benzene	ND	0.0025	"	"	"	"	"	"			
Toluene	ND	0.0025	"	"	"	"	"	"			
Ethylbenzene	ND	0.0025	"	"	"	"	"	"			
m,p-Xylene	ND	0.0050	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

o-Xylene

Surrogate: Toluene-d8

4

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank
Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

SV-8-5 T211739-12 (Soil)

Reporting
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number:SM20-303682.1Reported:Torrance CA, 90501Project Manager:Bruce Eppler06/01/21 14:52

Reporting

SV-8-10 T211739-13 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
Bromochloromethane	ND	0.0025	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0025	"	"	"	"	"	"	
Bromoform	ND	0.0025	"	"	"	"	"	"	
Bromomethane	ND	0.0025	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0025	"	"	"	"	"	"	
Chlorobenzene	ND	0.0025	"	"	"	"	"	"	
Chloroethane	ND	0.0025	"	"	"	"	"	"	
Chloroform	ND	0.0025	"	"	"	"	"	"	
Chloromethane	ND	0.0025	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0050	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0025	"	"	"	"	"	"	
Dibromomethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0025	"	"	"	"	"	"	

ND

0.0025

SunStar Laboratories, Inc.

2,2-Dichloropropane

H

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank
Project Number: SM20-303682.1

Reported: 06/01/21 14:52

SV-8-10 T211739-13 (Soil)

Project Manager: Bruce Eppler

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,1-Dichloropropene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0025	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0025	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0025	"	"	"	"	"	"	
Methylene chloride	ND	0.010	"	"	"	"	"	"	
Naphthalene	ND	0.0025	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0025	"	"	"	"	"	"	
Styrene	ND	0.0025	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
Trichloroethene	ND	0.0025	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
Vinyl chloride	ND	0.0025	"	"	"	"	"	"	
Benzene	ND	0.0025	"	"	"	"	"	"	
Toluene	ND	0.0025	"	"	"	"	"	"	
Ethylbenzene	ND	0.0025	"	"	"	"	"	"	
m,p-Xylene	ND	0.0050	"	"	"	"	"	"	
o-Xylene	ND	0.0025	"	"	"	"	"	"	
Surrogate: Toluene-d8		105 %	76.1-	-127	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.9 %	85.9	-114	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %	77.8-		"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mike Jaroudi, Project Manager

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Project: Marriott- Burbank Project Number: SM20-303682.1

Reported:

Torrance CA, 90501

Project Manager: Bruce Eppler

06/01/21 14:52

SV-8-10 T211739-13 (Soil)

		Reporting							I
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Method

Notes

Partner Engineering & Science, Inc.--Tor Project: Marriott-Burbank

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1 Reported: Torrance CA, 90501 Project Manager: Bruce Eppler 06/01/21 14:52

Reporting

Limit

Result

ND

ND

0.0020

0.0020

SV-9-5 T211739-14 (Soil)

Units

Dilution

Batch

Prepared

Analyzed

		SunStar L	aboratorie	s, Inc.				
Volatile Organic Compounds by EPA	Method 8260B							
Bromobenzene	ND	0.0020	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035
Bromochloromethane	ND	0.0020	"	"	"	"	"	"
Bromodichloromethane	ND	0.0020	"	"	"	"	"	"
Bromoform	ND	0.0020	"	"	"	"	"	"
Bromomethane	ND	0.0020	"	"	"	"	"	"
-Butylbenzene	ND	0.0020	"	"	"	"	"	"
ec-Butylbenzene	ND	0.0020	"	"	"	"	"	"
ert-Butylbenzene	ND	0.0020	"	"	"	"	"	"
Carbon tetrachloride	ND	0.0020	"	"	"	"	"	"
Chlorobenzene	ND	0.0020	"	"	"	"	"	"
Chloroethane	ND	0.0020	"	"	"	"	"	"
Chloroform	ND	0.0020	"	"	"	"	"	"
hloromethane	ND	0.0020	"	"	"	"	"	"
-Chlorotoluene	ND	0.0020	"	"	"	"	"	"
-Chlorotoluene	ND	0.0020	"	"	"	"	"	"
bibromochloromethane	ND	0.0020	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	0.0040	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	0.0020	"	"	"	"	"	"
Dibromomethane	ND	0.0020	"	"	"	"	"	"
,2-Dichlorobenzene	ND	0.0020	"	"	"	"	"	"
,3-Dichlorobenzene	ND	0.0020	"	"	"	"	"	"
,4-Dichlorobenzene	ND	0.0020	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.0020	"	"	"	"	"	"
1-Dichloroethane	ND	0.0020	"	"	"	"	"	"
,2-Dichloroethane	ND	0.0020	"	"	"	"	"	"
,1-Dichloroethene	ND	0.0020	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	0.0020	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	0.0020	"	"	"	"	"	"
,2-Dichloropropane	ND	0.0020	"	"	"	"	"	"

SunStar Laboratories, Inc.

1,3-Dichloropropane

2,2-Dichloropropane

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project Number: SM20-303682.1
Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

SV-9-5 T211739-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,1-Dichloropropene	ND	0.0020	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0020	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0020	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0020	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0020	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0020	"	"	"	"	"	"	
Methylene chloride	ND	0.0079	"	"	"	"	"	"	
Naphthalene	ND	0.0020	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0020	"	"	"	"	"	"	
Styrene	ND	0.0020	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0020	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0020	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0020	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0020	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0020	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0020	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0020	"	"	"	"	"	"	
Trichloroethene	ND	0.0020	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0020	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0020	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0020	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0020	"	"	"	"	"	"	
Vinyl chloride	ND	0.0020	"	"	"	"	"	"	
Benzene	ND	0.0020	"	"	"	"	"	"	
Toluene	ND	0.0020	"	"	"	"	"	"	
Ethylbenzene	ND	0.0020	"	"	"	"	"	"	
m,p-Xylene	ND	0.0040	"	"	"	"	"	"	
o-Xylene	ND	0.0020	"	"	"	"	"	"	
Surrogate: Toluene-d8		104 %	76.1-	-127	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.3 %	85.9	-114	"	"	"	"	
Surrogate: Dibromofluoromethane		105 %	77.8-		"	,,	"	"	

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank

Project Number: SM20-303682.1 Project Manager: Bruce Eppler Reported:

06/01/21 14:52

SV-9-5

T211739-14 (Soil)

Reporting
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number: SM20-303682.1Reported:Torrance CA, 90501Project Manager: Bruce Eppler06/01/21 14:52

SV-9-10 T211739-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
Bromochloromethane	ND	0.0025	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0025	"	"	"	"	"	"	
Bromoform	ND	0.0025	"	"	"	"	"	"	
Bromomethane	ND	0.0025	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0025	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0025	"	"	"	"	"	"	
Chlorobenzene	ND	0.0025	"	"	"	"	"	"	
Chloroethane	ND	0.0025	"	"	"	"	"	"	
Chloroform	ND	0.0025	"	"	"	"	"	"	
Chloromethane	ND	0.0025	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0025	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0050	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0025	"	"	"	"	"	"	
Dibromomethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0025	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"	

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank
Project Number: SM20-303682.1

Reported:

06/01/21 14:52

SV-9-10 T211739-15 (Soil)

Project Manager: Bruce Eppler

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,1-Dichloropropene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0025	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0025	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0025	"	"	"	"	"	"	
Methylene chloride	ND	0.010	"	"	"	"	"	"	
Naphthalene	ND	0.0025	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0025	"	"	"	"	"	"	
Styrene	ND	0.0025	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
Trichloroethene	ND	0.0025	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
Vinyl chloride	ND	0.0025	"	"	"	"	"	"	
Benzene	ND	0.0025	"	"	"	"	"	"	
Toluene	ND	0.0025	"	"	"	"	"	"	
Ethylbenzene	ND	0.0025	"	"	"	"	"	"	
m,p-Xylene	ND	0.0050	"	"	"	"	"	"	
o-Xylene	ND	0.0025	"	"	"	"	"	"	
Surrogate: Toluene-d8		105 %	76.1-	-127	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	85.9	-114	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %	77.8-		"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mike Jaroudi, Project Manager

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Project: Marriott- Burbank Project Number: SM20-303682.1

Reported:

Torrance CA, 90501

Project Manager: Bruce Eppler

06/01/21 14:52

SV-9-10 T211739-15 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number:SM20-303682.1Reported:Torrance CA, 90501Project Manager:Bruce Eppler06/01/21 14:52

SV-9-20 T211739-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					

Volatile Oro	ranic Compor	inds by FPA I	Method 8260B
voiatile Oig	zamie Compot	inus by ElAi	vicinou ozood

Bromobenzene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035
Bromochloromethane	ND	0.0025	"	"	"	"	"	"
Bromodichloromethane	ND	0.0025	"	"	"	"	"	"
Bromoform	ND	0.0025	"	"	"	"	"	"
Bromomethane	ND	0.0025	"	"	"	"	"	"
n-Butylbenzene	ND	0.0025	"	"	"	"	"	"
sec-Butylbenzene	ND	0.0025	"	"	"	"	"	"
tert-Butylbenzene	ND	0.0025	"	"	"	"	"	"
Carbon tetrachloride	ND	0.0025	"	"	"	"	"	"
Chlorobenzene	ND	0.0025	"	"	"	"	"	"
Chloroethane	ND	0.0025	"	"	"	"	"	"
Chloroform	ND	0.0025	"	"	"	"	"	"
Chloromethane	ND	0.0025	"	"	"	"	"	"
2-Chlorotoluene	ND	0.0025	"	"	"	"	"	"
4-Chlorotoluene	ND	0.0025	"	"	"	"	"	"
Dibromochloromethane	ND	0.0025	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	0.0050	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	0.0025	"	"	"	"	"	"
Dibromomethane	ND	0.0025	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	0.0025	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.0025	"	"	"	"	"	"
1,1-Dichloroethane	ND	0.0025	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.0025	"	"	"	"	"	"
1,1-Dichloroethene	ND	0.0025	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	0.0025	"	"	"	"	"	"
1,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"
1,3-Dichloropropane	ND	0.0025	"	"	"	"	"	"
2,2-Dichloropropane	ND	0.0025	"	"	"	"	"	"

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1 Reported:
Torrance CA, 90501 Project Manager: Bruce Eppler 06/01/21 14:52

Reporting

SV-9-20 T211739-16 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,1-Dichloropropene	ND	0.0025	mg/kg	1	1052729	05/27/21	05/27/21	EPA 8260B/5035	
cis-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0025	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0025	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0025	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0025	"	"	"	"	"	"	
Methylene chloride	ND	0.010	"	"	"	"	"	"	
Naphthalene	ND	0.0025	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0025	"	"	"	"	"	"	
Styrene	ND	0.0025	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0025	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0025	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0025	"	"	"	"	"	"	
Trichloroethene	ND	0.0025	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0025	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0025	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0025	"	"	"	"	"	"	
Vinyl chloride	ND	0.0025	"	"	"	"	"	"	
Benzene	ND	0.0025	"	"	"	"	"	"	
Toluene	ND	0.0025	"	"	"	"	"	"	
Ethylbenzene	ND	0.0025	"	"	"	"	"	"	
m,p-Xylene	ND	0.0050	"	"	"	"	"	"	
o-Xylene	ND	0.0025	"	"	"	"	"	"	
Surrogate: Toluene-d8		103 %	76.1	-127	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.4 %	85.9	-114	"	"	"	"	
Surrogate: Dibromofluoromethane		106 %	77.8	-142	"	"	"	"	

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Project Number: SM20-303682.1

Project: Marriott-Burbank

Reported:

Torrance CA, 90501

Project Manager: Bruce Eppler

06/01/21 14:52

SV-9-20 T211739-16 (Soil)

		Reporting							
Anal	te Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

H

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1 Torrance CA, 90501 Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Project: Marriott-Burbank

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	1052720	FDA	5035	CCMS

Blank (1052729-BLK1)				Prepared & Analyzed: 05/27/21
Bromobenzene	ND	0.0025	mg/kg	
Bromochloromethane	ND	0.0025	"	
Bromodichloromethane	ND	0.0025	"	
Bromoform	ND	0.0025	"	
Bromomethane	ND	0.0025	"	
n-Butylbenzene	ND	0.0025	"	
sec-Butylbenzene	ND	0.0025	"	
tert-Butylbenzene	ND	0.0025	"	
Carbon tetrachloride	ND	0.0025	"	
Chlorobenzene	ND	0.0025	"	
Chloroethane	ND	0.0025	"	
Chloroform	ND	0.0025	"	
Chloromethane	ND	0.0025	"	
2-Chlorotoluene	ND	0.0025	"	
4-Chlorotoluene	ND	0.0025	"	
Dibromochloromethane	ND	0.0025	"	
1,2-Dibromo-3-chloropropane	ND	0.0050	"	
1,2-Dibromoethane (EDB)	ND	0.0025	"	
Dibromomethane	ND	0.0025	"	
1,2-Dichlorobenzene	ND	0.0025	"	
1,3-Dichlorobenzene	ND	0.0025	"	
1,4-Dichlorobenzene	ND	0.0025	"	
Dichlorodifluoromethane	ND	0.0025	"	
1,1-Dichloroethane	ND	0.0025	"	
1,2-Dichloroethane	ND	0.0025	"	
1,1-Dichloroethene	ND	0.0025	"	
cis-1,2-Dichloroethene	ND	0.0025	"	
trans-1,2-Dichloroethene	ND	0.0025	"	
1,2-Dichloropropane	ND	0.0025	"	
1,3-Dichloropropane	ND	0.0025	"	
2,2-Dichloropropane	ND	0.0025	"	
1,1-Dichloropropene	ND	0.0025	"	
cis-1,3-Dichloropropene	ND	0.0025	"	
trans-1,3-Dichloropropene	ND	0.0025	"	
Hexachlorobutadiene	ND	0.0025	"	
Isopropylbenzene	ND	0.0025	"	

SunStar Laboratories, Inc.

rf

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank
Project Number: SM20-303682.1

Reported: 06/01/21 14:52

Project Manager: Bruce Eppler

06/01/21

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (1052729-BLK1)				Prepared & Analy	yzed: 05/27/21	
p-Isopropyltoluene	ND	0.0025	mg/kg			
Methylene chloride	ND	0.010	"			
Naphthalene	ND	0.0025	"			
n-Propylbenzene	ND	0.0025	"			
Styrene	ND	0.0025	"			
1,1,2,2-Tetrachloroethane	ND	0.0025	"			
1,1,1,2-Tetrachloroethane	ND	0.0025	"			
Tetrachloroethene	ND	0.0025	"			
1,2,3-Trichlorobenzene	ND	0.0025	"			
1,2,4-Trichlorobenzene	ND	0.0025	"			
1,1,2-Trichloroethane	ND	0.0025	"			
1,1,1-Trichloroethane	ND	0.0025	"			
Trichloroethene	ND	0.0025	"			
Trichlorofluoromethane	ND	0.0025	"			
1,2,3-Trichloropropane	ND	0.0025	"			
1,3,5-Trimethylbenzene	ND	0.0025	"			
1,2,4-Trimethylbenzene	ND	0.0025	"			
Vinyl chloride	ND	0.0025	"			
Benzene	ND	0.0025	"			
Toluene	ND	0.0025	"			
Ethylbenzene	ND	0.0025	"			
m,p-Xylene	ND	0.0050	"			
o-Xylene	ND	0.0025	"			
Surrogate: Toluene-d8	0.0495		"	0.0500	99.0	76.1-127
Surrogate: 4-Bromofluorobenzene	0.0472		"	0.0500	94.4	85.9-114
Surrogate: Dibromofluoromethane	0.0508		"	0.0500	102	77.8-142
LCS (1052729-BS1)				Prepared & Analy	yzed: 05/27/21	
Chlorobenzene	0.0491	0.0025	mg/kg	0.0500	98.2	79.1-117
1,1-Dichloroethene	0.0513	0.0025	"	0.0500	103	68-126
Trichloroethene	0.0505	0.0025	"	0.0500	101	80.6-119
Benzene	0.0540	0.0025	"	0.0500	108	79.1-117
Toluene	0.0528	0.0025	"	0.0500	106	79.5-118
Surrogate: Toluene-d8	0.0503		"	0.0500	101	76.1-127
Surrogate: 4-Bromofluorobenzene	0.0511		"	0.0500	102	85.9-114
Surrogate: Dibromofluoromethane	0.0509		"	0.0500	102	77.8-142

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

H

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1 Torrance CA, 90501 Project Manager: Bruce Eppler

Reported:

06/01/21 14:52

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Project: Marriott-Burbank

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Maryte	Result	Dillit	Omts	Level	Result	70KLC	Limits	МЪ	Limit	Tioles
Batch 1052729 - EPA 5035 GCMS										
LCS Dup (1052729-BSD1)				Prepared &	: Analyzed:	05/27/21				
Chlorobenzene	0.0493	0.0025	mg/kg	0.0500		98.7	79.1-117	0.447	20	
1,1-Dichloroethene	0.0493	0.0025	"	0.0500		98.6	68-126	4.06	20	
Trichloroethene	0.0508	0.0025	"	0.0500		102	80.6-119	0.533	20	
Benzene	0.0532	0.0025	"	0.0500		106	79.1-117	1.49	20	
Toluene	0.0525	0.0025	"	0.0500		105	79.5-118	0.456	20	
Surrogate: Toluene-d8	0.0502		"	0.0500		100	76.1-127			
Surrogate: 4-Bromofluorobenzene	0.0512		"	0.0500		102	85.9-114			
Surrogate: Dibromofluoromethane	0.0491		"	0.0500		98.2	77.8-142			

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1 Reported:
Torrance CA, 90501 Project Manager: Bruce Eppler 06/01/21 14:52

Notes and Definitions

R-07 Reporting limit for this compound(s) has been raised to account for dilution necessary due to high levels of interfering compound(s)

and/or matrix affect.

M-04 Multiple analysis yielded low internal standard/or surrogate recoveries due to matrix effect. Low internal standard results may cause a

potential high bias in sample results.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.

Chain of Custody Record

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive, Lake Forest, CA 92630

23/12	Commercentie	Dilve,	Lanc	•	Oil
949-29	7-5020				

Client: OTTO TO Address: 2154 To To To Phone: 916 532 C	EST OCTC Epple	Fax:	rance	CA			Pro	oject Ilect	or:	ne:_	M2	ari		+-5		Page Client EDF #	Project #:	Of_ SM_2		
Sample ID OI OI OI OI OI OI OI OI OI	Date Sampled C5-25-21 Date / Ti Date / Ti S/26/2 (Date / Ti	Time 1306 1354 1415 1242 810 815 1110 1115 927 933 1029 1034 me 930 me	Received b	Container Type VSAS	5/2/2	0/21 Di	ate /	Time	8	R	ain of	To f Cust Seaved go	time:	of containing the state of the	NANA NASA n/cold	N NA 1.70	Stock	Note Se Ca	ill Bi	en+
Sample disposal fristructions.	ορυσαι (ω ψz.00 e		. www.					-						JUNE	-		coc 1	9006	0 -	

SunStar Laboratories, Inc.

Chain of Custody Record

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive, Lake Forest, CA 9263	2571	2	Commercentre	Drive,	Lake	Forest,	CA	92630
--	------	---	--------------	--------	------	---------	----	-------

949-297-5020

Client: 1 arthur Address: 54 Torra Phone: 916 532	ES anop Blo -0670 ce Eppl	rely To	OTTAK	e, M	-			Pro Col	ject lecto	Nan	ne:_	N	107	eri	1	Bur	Pag Clier EDF	nt Project #: NVXX 3-3056	_ .82
Laboratory ID #	Date Sampled	Time	Sample Type	Container Type	X 8260	8260 + OXY	8260 BTEX, OXY only	8270	8021 BTEX	X 8015M (gasoline) Stock (SIC)	8015M (diesel)	8015M Ext./Carbon Chain	6010/7000 Title 22 Metals	6020 ICP-MS Metals			3	Comments/Preservative	Total # of containers
Relinquished by: (signature) Relinquished by: (signature) Relinquished by: (signature)	Date / Ti Date / Ti 5/26/2 / Date / Ti	me 12:50	Received b	by: (signature) by: (signature) by: (signature)	5/26	5/21	Date	1	1:3 ime	8			f Cus	stody eals in	seals `tact?`	ntainers Y/N/NA Y/N/NA on/cold		Notes	
Sample disposal Instructions: D	oisposal @ \$2.00 e	each	Return	to client		Pick	cup _				Tur	n are	ound	d time	OF FIVE	e d	345	coc 190061	

SAMPLE RECEIVING REVIEW SHEET

Batch/Work Order #: 121739	
Client Name: Partre-FSI Project: M	ariott-Burbank
Delivered by:	☐ FedEx ☐ Other
If Courier, Received by: Date/Time Congressived: Date/Time Congre	5/26/21 11:38
Lab Received by: Date/Time La Received:	5/26/21 12:50
Total number of coolers received: / Thermometer ID:SC-GUN_	Calibration due: <u>8/17/21</u>
Temperature: Cooler #1 $1-9$ °C +/- the CF (-0.2°C) = 1.7	°C corrected temperature
Temperature: Cooler #2 $^{\circ}$ C +/- the CF (-0.2°C) =	°C corrected temperature
Temperature: Cooler #3 $^{\circ}$ C +/- the CF (-0.2°C) =	°C corrected temperature
Temperature criteria = ≤ 6 °C (no frozen containers) Within criteria?	∑Yes □No □N/A
If NO:	
Samples received on ice?	No →
Samples received on rec.	Complete Non-Conformance Sheet
If on ice, samples received same day collected? ☐Yes → Acceptable	Complete Non-Conformance Sheet No → Complete Non-Conformance Sheet
If on ice, samples received same day □ Ves → Acceptable	$\square No \rightarrow$
If on ice, samples received same day collected? ☐Yes → Acceptable	□No → Complete Non-Conformance Sheet
If on ice, samples received same day collected? ☐Yes → Acceptable Custody seals intact on cooler/sample	No → Complete Non-Conformance Sheet Yes No* N/A
If on ice, samples received same day collected? ☐Yes → Acceptable Custody seals intact on cooler/sample Sample containers intact	No → Complete Non-Conformance Sheet Yes No* No* No*
If on ice, samples received same day collected? Custody seals intact on cooler/sample Sample containers intact Sample labels match Chain of Custody IDs	No → Complete Non-Conformance Sheet Yes No* N/A Yes No* Yes No*
If on ice, samples received same day collected? Custody seals intact on cooler/sample Sample containers intact Sample labels match Chain of Custody IDs Total number of containers received match COC	No → Complete Non-Conformance Sheet Yes No* N/A Yes No* Yes No* Yes No* No*
If on ice, samples received same day collected? Custody seals intact on cooler/sample Sample containers intact Sample labels match Chain of Custody IDs Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Complete shipment received in good condition with correct temperatures, containers, labels, volumes preservatives and within method specified holding times	No → Complete Non-Conformance Sheet Yes No* No* No* Yes No* Yes No* Yes No* Yes No* Yes No* Yes No*
If on ice, samples received same day collected? Custody seals intact on cooler/sample Sample containers intact Sample labels match Chain of Custody IDs Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Complete shipment received in good condition with correct temperatures, containers, labels, volumes preservatives and within method specified holding times	No → Complete Non-Conformance Sheet Yes No* No* No* Yes No* Yes No* Yes No* Yes No* Yes No* Yes No*
If on ice, samples received same day collected? Custody seals intact on cooler/sample Sample containers intact Sample labels match Chain of Custody IDs Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Complete shipment received in good condition with correct temperatures, containers, labels, volumes preservatives and within method specified holding times	No → Complete Non-Conformance Sheet Yes No* No* No* Yes No* Yes No* Yes No* Yes No* Yes No* Yes No*

Page 1 of ___

SAMPLE NON-CONFORMANCE SHEET

Batch/Work Order #	
 COOLERS	■ LABELS Not the same sample ID / info as on the COC Incomplete Information Markings/Info illegible SAMPLES Samples NOT RECEIVED but listed on COC Samples received but NOT LISTED on COC Logged based on Label Information and not COC Logged according to Work Plan and not COC Logged in, ON HOLD until further notice Insufficient quantities for analysis Improper container used Mislabeled as to tests, preservatives, etc. Holding time expired – list sample ID and test Not preserved/Improper preservative used Without Labels, no information on containers VOA vial(s) containing headspace >6mm Other
Project Manager notified of sample non-conformance(s)	∑Yes □No
All samples accepted for processing and distributing to labor	pratory(ies) Yes No
For samples not accepted due to non-conformance, specify section below:	each specific sample ID being rejected in the comments
Comments:	

Printed: 5/26/2021 5:14:06PM

WORK ORDER

T211739

Client:Partner Engineering & Science, Inc.--TorProject Manager:Mike JaroudiProject:Marriott- BurbankProject Number:SM20-303682.1

Report To:

Partner Engineering & Science, Inc.--Tor

Bruce Eppler

2154 Torrance Blvd., Suite 200

Torrance, CA 90501

Date Due: 06/01/21 17:00 (3 day TAT)

Received By: Jennifer Berger Date Received: 05/26/21 12:50
Logged In By: Mike Jaroudi Date Logged In: 05/26/21 17:08

Samples Received at: 1.7°C

Custody Seals Yes Received On Ice Yes

Containers Intact Yes
COC/Labels Agree Yes
Preservation Confirme Yes

Analysis	Due	TAT	Expires	Comments
T211739-01 SV-1-5 [Soil]	Sampled 05/25/21 13:20 (GM	IT-08:00) Pa	cific Time	
8260 5035	06/01/21 15:00	3	06/08/21 13:20	
T211739-02 SV-2-5 [Soil (US &	Sampled 05/25/21 13:54 (GM	IT-08:00) Pa	cific Time	
8260 5035	06/01/21 15:00	3	06/08/21 13:54	
T211739-03 SV-3-5 [Soil] (US &	Sampled 05/25/21 14:15 (GM	IT-08:00) Pa	cific Time	
8260 5035	06/01/21 15:00	3	06/08/21 14:15	
T211739-04 SV-4-5 [Soil]	Sampled 05/25/21 14:55 (GM	IT-08:00) Pa	cific Time	
8260 5035	06/01/21 15:00	3	06/08/21 14:55	
T211739-05 SV-5-5 [Soil] (US &	Sampled 05/25/21 12:49 (GM	IT-08:00) Pa	cific Time	
8260 5035	06/01/21 15:00	3	06/08/21 12:49	
T211739-06 SV-6-5 [Soil] (US &	Sampled 05/25/21 08:10 (GM	TT-08:00) Pa	cific Time	
8260 5035	06/01/21 15:00	3	06/08/21 08:10	
T211739-07 SV-6-10 [Soi (US &	il] Sampled 05/25/21 08:15 (G	MT-08:00) P	acific Time	
8260 5035	06/01/21 15:00	3	06/08/21 08:15	

Printed: 5/26/2021 5:14:06PM

WORK ORDER

T211739

Client: Partner Engineering & Science, Inc.--Tor **Project Manager:** Mike Jaroudi


Project: Marriott- Burbank **Project Number:** SM20-303682.1

Analysis Due TAT **Expires** Comments T211739-08 SV-6-20 [Soil] Sampled 05/25/21 08:50 (GMT-08:00) Pacific Time (US & 8260 5035 06/01/21 15:00 06/08/21 08:50 T211739-09 SV-7-5 [Soil] Sampled 05/25/21 11:50 (GMT-08:00) Pacific Time (US & 8260 5035 06/01/21 15:00 06/08/21 11:50 3 T211739-10 SV-7-10 [Soil] Sampled 05/25/21 11:10 (GMT-08:00) Pacific Time (US & 06/01/21 15:00 8260 5035 06/08/21 11:10 T211739-11 SV-7-20 [Soil] Sampled 05/25/21 11:15 (GMT-08:00) Pacific Time (US & 8260 5035 06/01/21 15:00 06/08/21 11:15 T211739-12 SV-8-5 [Soil] Sampled 05/25/21 09:27 (GMT-08:00) Pacific Time (US & 8260 5035 06/01/21 15:00 06/08/21 09:27 T211739-13 SV-8-10 [Soil] Sampled 05/25/21 09:33 (GMT-08:00) Pacific Time (US & 8260 5035 06/08/21 09:33 06/01/21 15:00 T211739-14 SV-9-5 [Soil] Sampled 05/25/21 10:29 (GMT-08:00) Pacific Time (US & 8260 5035 06/01/21 15:00 06/08/21 10:29 3 T211739-15 SV-9-10 [Soil] Sampled 05/25/21 10:34 (GMT-08:00) Pacific Time (US & 8260 5035 06/01/21 15:00 06/08/21 10:34 T211739-16 SV-9-20 [Soil] Sampled 05/25/21 10:36 (GMT-08:00) Pacific Time (US & 8260 5035 06/01/21 15:00 06/08/21 10:36

Reviewed By

Date

3

11 June 2021

Bruce Eppler
Partner Engineering & Science, Inc.--Tor
2154 Torrance Blvd., Suite 200
Torrance, CA 90501

RE: Marriott- Burbank

Enclosed are the results of analyses for samples received by the laboratory on 06/04/21 09:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi

Project Manager

Partner Engineering & Science, Inc.--Tor 2154 Torrance Blvd., Suite 200

Torrance CA, 90501

Project Number: SM20-303682.1
Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV-1-5	T211859-01	Air	06/03/21 08:45	06/04/21 09:10
SV-2-5	T211859-02	Air	06/03/21 09:25	06/04/21 09:10
SV-3-5	T211859-03	Air	06/03/21 09:08	06/04/21 09:10
SV-4-5	T211859-04	Air	06/03/21 09:42	06/04/21 09:10
SV-5-5	T211859-05	Air	06/03/21 08:21	06/04/21 09:10
SV-6-20	T211859-06	Air	06/03/21 10:16	06/04/21 09:10
SV-7-20	T211859-07	Air	06/03/21 10:58	06/04/21 09:10
SV-8-20	T211859-08	Air	06/03/21 10:34	06/04/21 09:10
SV-9-20	T211859-09	Air	06/03/21 11:20	06/04/21 09:10
SV-4-5-DUP	T211859-10	Air	06/03/21 09:53	06/04/21 09:10
SV-7-20-DUP	T211859-11	Air	06/03/21 11:03	06/04/21 09:10

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank

Project Number: SM20-303682.1 Project Manager: Bruce Eppler **Reported:** 06/11/21 09:58

DETECTIONS SUMMARY

Sample ID:	SV-1-5	Laboratory ID:	T211859-01
------------	--------	----------------	------------

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Acetone	19	12	ug/m³ Air	TO-15	
Carbon Disulfide	2.1	3.2	ug/m³ Air	TO-15	J
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	170	7.7	ug/m³ Air	TO-15	
Isopropyl alcohol	2.9	13	ug/m³ Air	TO-15	J
cis-1,2-Dichloroethene	27	4.0	ug/m³ Air	TO-15	
4-Ethyltoluene	0.91	5.0	ug/m³ Air	TO-15	
Styrene	5.5	4.3	ug/m³ Air	TO-15	
Tetrachloroethene	960	6.9	ug/m³ Air	TO-15	
Trichloroethene	7.1	5.5	ug/m³ Air	TO-15	
1,2,4-Trimethylbenzene	4.6	5.0	ug/m³ Air	TO-15	
2-Butanone (MEK)	11	15	ug/m³ Air	TO-15	
Toluene	5.1	3.8	ug/m³ Air	TO-15	

Sample ID: SV-2-5 Laboratory ID: T211859-02

	Reporting				
Analyte	Result	Limit	Units	Method	Note
1,1-Difluoroethane (Freon 152)	9.1	27	ug/m³ Air	TO-15	
Acetone	38	12	ug/m³ Air	TO-15	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	73	7.7	ug/m³ Air	TO-15	
Isopropyl alcohol	3.4	13	ug/m³ Air	TO-15	
Hexane	4.7	3.6	ug/m³ Air	TO-15	
4-Ethyltoluene	1.1	5.0	ug/m³ Air	TO-15	
Styrene	7.6	4.3	ug/m³ Air	TO-15	
Tetrachloroethene	610	6.9	ug/m³ Air	TO-15	
Trichloroethene	4.4	5.5	ug/m³ Air	TO-15	
1,2,4-Trimethylbenzene	5.6	5.0	ug/m³ Air	TO-15	
2-Butanone (MEK)	9.8	15	ug/m³ Air	TO-15	
Toluene	3.3	3.8	ug/m³ Air	TO-15	
Ethylbenzene	1.2	4.4	ug/m³ Air	TO-15	
m,p-Xylene	3.7	8.8	ug/m³ Air	TO-15	
o-Xylene	1.8	4.4	ug/m³ Air	TO-15	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1 Reported:
Torrance CA, 90501 Project Manager: Bruce Eppler 06/11/21 09:58

Sample ID:SV-2-5Laboratory ID:T211859-02

Reporting

Analyte Result Limit Units Method Notes

Sample ID: SV-3-5 Laboratory ID: T211859-03

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Acetone	34	12	ug/m³ Air	TO-15	
Carbon Disulfide	2.3	3.2	ug/m³ Air	TO-15	J
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	110	7.7	ug/m³ Air	TO-15	
Isopropyl alcohol	3.3	13	ug/m³ Air	TO-15	J
Chloroform	0.94	5.0	ug/m³ Air	TO-15	J
Styrene	7.1	4.3	ug/m³ Air	TO-15	
Tetrahydrofuran	4.1	3.0	ug/m³ Air	TO-15	
Tetrachloroethene	910	6.9	ug/m³ Air	TO-15	
Trichloroethene	4.4	5.5	ug/m³ Air	TO-15	J
1,2,4-Trimethylbenzene	6.0	5.0	ug/m³ Air	TO-15	
2-Butanone (MEK)	18	15	ug/m³ Air	TO-15	
Benzene	1.4	3.3	ug/m³ Air	TO-15	J
Toluene	6.6	3.8	ug/m³ Air	TO-15	
Ethylbenzene	1.1	4.4	ug/m³ Air	TO-15	J
m,p-Xylene	4.2	8.8	ug/m³ Air	TO-15	J
o-Xylene	1.8	4.4	ug/m³ Air	TO-15	J

Sample ID: SV-4-5 Laboratory ID: T211859-04

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1-Difluoroethane (Freon 152)	7.7	27	ug/m³ Air	TO-15	
Acetone	43	12	ug/m³ Air	TO-15	
Carbon Disulfide	1.1	3.2	ug/m³ Air	TO-15	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	54	7.7	ug/m³ Air	TO-15	
Isopropyl alcohol	5.6	13	ug/m³ Air	TO-15	
Carbon tetrachloride	0.22	6.4	ug/m³ Air	TO-15	
Chloroform	4.8	5.0	ug/m³ Air	TO-15	
1,3-Dichlorobenzene	0.96	31	ug/m³ Air	TO-15	
Styrene	7.2	4.3	ug/m³ Air	TO-15	
Tetrachloroethene	340	6.9	ug/m³ Air	TO-15	
Trichloroethene	11	5.5	ug/m³ Air	TO-15	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number: SM20-303682.1Reported:Torrance CA, 90501Project Manager: Bruce Eppler06/11/21 09:58

Sample ID: SV-4-5	Labora	tory ID:	T211859-04		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,2,4-Trimethylbenzene	4.7	5.0	ug/m³ Air	TO-15	J
2-Butanone (MEK)	8.7	15	ug/m³ Air	TO-15	J
Benzene	0.62	3.3	ug/m³ Air	TO-15	J
Toluene	2.7	3.8	ug/m³ Air	TO-15	J
Ethylbenzene	1.1	4.4	ug/m³ Air	TO-15	J
m,p-Xylene	3.2	8.8	ug/m³ Air	TO-15	J
o-Xylene	1.6	4.4	ug/m³ Air	TO-15	J
Sample ID: SV-5-5	Labora	itory ID:	T211859-05		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Acetone	25	12	ug/m³ Air	TO-15	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	58	7.7	ug/m³ Air	TO-15	
Isopropyl alcohol	110	13	ug/m³ Air	TO-15	
Chloroform	0.92	5.0	ug/m³ Air	TO-15	J
1,4-Dichlorobenzene	0.91	31	ug/m³ Air	TO-15	J
4-Ethyltoluene	1.8	5.0	ug/m³ Air	TO-15	J
Methylene chloride	6.9	27	ug/m³ Air	TO-15	J
Styrene	7.1	4.3	ug/m³ Air	TO-15	
Tetrachloroethene	240	6.9	ug/m³ Air	TO-15	
Trichloroethene	8.8	5.5	ug/m³ Air	TO-15	
1,2,4-Trimethylbenzene	11	5.0	ug/m³ Air	TO-15	
Benzene	0.60	3.3	ug/m³ Air	TO-15	J
Toluene	5.7	3.8	ug/m³ Air	TO-15	
Ethylbenzene	1.6	4.4	ug/m³ Air	TO-15	J
m,p-Xylene	5.3	8.8	ug/m³ Air	TO-15	J
o-Xylene	2.5	4.4	ug/m³ Air	TO-15	J
Sample ID: SV-6-20	Labora	itory ID:	T211859-06		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1-Difluoroethane (Freon 152)	12	27	ug/m³ Air	TO-15	
Acetone	82	12	ug/m³ Air	TO-15	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	280	7.7	ug/m³ Air	TO-15	
Isopropyl alcohol	9.4	13	ug/m³ Air	TO-15	J

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1 Reported:
Torrance CA, 90501 Project Manager: Bruce Eppler 06/11/21 09:58

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Carbon tetrachloride	3.9	6.4	ug/m³ Air	TO-15	J
Chloroform	0.87	5.0	ug/m³ Air	TO-15	J
1,3-Dichlorobenzene	2.0	31	ug/m³ Air	TO-15	J
4-Ethyltoluene	0.70	5.0	ug/m³ Air	TO-15	J
Styrene	7.1	4.3	ug/m³ Air	TO-15	
Tetrachloroethene	1000	6.9	ug/m³ Air	TO-15	
Trichloroethene	81	5.5	ug/m³ Air	TO-15	
Trichlorofluoromethane	3.6	5.7	ug/m³ Air	TO-15	J
1,2,4-Trimethylbenzene	4.9	5.0	ug/m³ Air	TO-15	J
2-Butanone (MEK)	31	15	ug/m³ Air	TO-15	
Benzene	0.97	3.3	ug/m³ Air	TO-15	J
Toluene	3.6	3.8	ug/m³ Air	TO-15	J

Sample ID:	SV-7-20	Laboratory ID:	T211859-07

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Acetone	42	12	ug/m³ Air	TO-15	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	460	7.7	ug/m³ Air	TO-15	
Isopropyl alcohol	3.5	13	ug/m³ Air	TO-15	J
Bromodichloromethane	4.2	6.8	ug/m³ Air	TO-15	J
Carbon tetrachloride	9.7	6.4	ug/m³ Air	TO-15	
Chloroform	2.4	5.0	ug/m³ Air	TO-15	J
1,3-Dichlorobenzene	1.6	31	ug/m³ Air	TO-15	J
1,1-Dichloroethene	3.6	4.0	ug/m³ Air	TO-15	J
4-Ethyltoluene	0.73	5.0	ug/m³ Air	TO-15	J
Styrene	4.0	4.3	ug/m³ Air	TO-15	J
Tetrachloroethene	2400	6.9	ug/m³ Air	TO-15	
1,1,1-Trichloroethane	0.91	5.6	ug/m³ Air	TO-15	J
Trichloroethene	480	5.5	ug/m³ Air	TO-15	
Trichlorofluoromethane	6.9	5.7	ug/m³ Air	TO-15	
1,2,4-Trimethylbenzene	4.4	5.0	ug/m³ Air	TO-15	J
2-Butanone (MEK)	11	15	ug/m³ Air	TO-15	J
Benzene	0.95	3.3	ug/m³ Air	TO-15	J
Toluene	3.3	3.8	ug/m³ Air	TO-15	J
Ethylbenzene	1.4	4.4	ug/m³ Air	TO-15	J
m,p-Xylene	3.6	8.8	ug/m³ Air	TO-15	J

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1 Reported:
Torrance CA, 90501 Project Manager: Bruce Eppler 06/11/21 09:58

ample ID: SV-7-20	Labora	tory ID:	T211859-07		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
o-Xylene	1.4	4.4	ug/m³ Air	TO-15	J
Sample ID: SV-8-20	Labora	ntory ID:	T211859-08		
•		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1-Difluoroethane (Freon 152)	7.2	27	ug/m³ Air	TO-15	rotes
Acetone	57	12	ug/m³ Air	TO-15	
Carbon Disulfide	2.2	3.2	ug/m³ Air	TO-15	J
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	190	7.7	ug/m³ Air	TO-15	Ş
Isopropyl alcohol	3.4	13	ug/m An ug/m³ Air	TO-15	J
Carbon tetrachloride	4.7	6.4	ug/m³ Air	TO-15	J
Chloroform	2.1	5.0	ug/m³ Air	TO-15	J
1,3-Dichlorobenzene	2.3	31	ug/m³ Air	TO-15	J
Styrene	8.0	4.3	ug/m³ Air	TO-15	
Tetrachloroethene	990	6.9	ug/m³ Air	TO-15	
1,1,1-Trichloroethane	1.3	5.6	ug/m³ Air	TO-15	J
Trichloroethene	220	5.5	ug/m³ Air	TO-15	
Trichlorofluoromethane	4.4	5.7	ug/m³ Air	TO-15	J
1,2,4-Trimethylbenzene	7.9	5.0	ug/m³ Air	TO-15	
2-Butanone (MEK)	21	15	ug/m³ Air	TO-15	
Benzene	1.2	3.3	ug/m³ Air	TO-15	J
Toluene	3.6	3.8	ug/m³ Air	TO-15	J
Ethylbenzene	3.6	4.4	ug/m³ Air	TO-15	J
m,p-Xylene	6.3	8.8	ug/m³ Air	TO-15	J
o-Xylene	2.6	4.4	ug/m³ Air	TO-15	J
ample ID: SV-9-20	Labora	ntory ID:	T211859-09		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1-Difluoroethane (Freon 152)	15		ug/m³ Air	TO-15	
Acetone	70	12	ug/m³ Air	TO-15	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	200	7.7	ug/m³ Air	TO-15	
Isopropyl alcohol	7.4	13	ug/m³ Air	TO-15	J
Carbon tetrachloride	6.0	6.4	ug/m³ Air	TO-15	J
cis-1,2-Dichloroethene	2.5	4.0	ug/m³ Air	TO-15	J

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200 Project Number: SM20-303682.1 Reported:
Torrance CA, 90501 Project Manager: Bruce Eppler 06/11/21 09:58

ample ID: SV-9-20	Laborat	ory ID:	T211859-09		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
4-Ethyltoluene	15	5.0	ug/m³ Air	TO-15	
Methylene chloride	13	27	ug/m³ Air	TO-15	J
Styrene	5.7	4.3	ug/m³ Air	TO-15	
Tetrachloroethene	1500	6.9	ug/m³ Air	TO-15	
Trichloroethene	280	5.5	ug/m³ Air	TO-15	
Trichlorofluoromethane	3.8	5.7	ug/m³ Air	TO-15	J
1,3,5-Trimethylbenzene	13	5.0	ug/m³ Air	TO-15	
1,2,4-Trimethylbenzene	83	5.0	ug/m³ Air	TO-15	
2-Butanone (MEK)	20	15	ug/m³ Air	TO-15	
Benzene	12	3.3	ug/m³ Air	TO-15	
Toluene	6.2	3.8	ug/m³ Air	TO-15	
Ethylbenzene	84	4.4	ug/m³ Air	TO-15	
m,p-Xylene	110	8.8	ug/m³ Air	TO-15	
o-Xylene	29	4.4	ug/m³ Air	TO-15	

Sample ID: SV-4-5-DUP Laboratory ID: T211859-10

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1-Difluoroethane (Freon 152)	6.3	27	ug/m³ Air	TO-15	
Acetone	25	12	ug/m³ Air	TO-15	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	59	7.7	ug/m³ Air	TO-15	
Chloroform	1.1	5.0	ug/m³ Air	TO-15	J
1,4-Dichlorobenzene	3.3	31	ug/m³ Air	TO-15	J
4-Ethyltoluene	0.96	5.0	ug/m³ Air	TO-15	J
Styrene	5.8	4.3	ug/m³ Air	TO-15	
Tetrachloroethene	360	6.9	ug/m³ Air	TO-15	
1,1,1-Trichloroethane	1.9	5.6	ug/m³ Air	TO-15	J
Trichloroethene	77	5.5	ug/m³ Air	TO-15	
1,2,4-Trimethylbenzene	4.6	5.0	ug/m³ Air	TO-15	J
2-Butanone (MEK)	4.7	15	ug/m³ Air	TO-15	J
Benzene	0.57	3.3	ug/m³ Air	TO-15	J
Toluene	3.0	3.8	ug/m³ Air	TO-15	J
Ethylbenzene	1.3	4.4	ug/m³ Air	TO-15	J
m,p-Xylene	3.9	8.8	ug/m³ Air	TO-15	J
o-Xylene	1.6	4.4	ug/m³ Air	TO-15	J

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number: SM20-303682.1Reported:Torrance CA, 90501Project Manager: Bruce Eppler06/11/21 09:58

Sample ID: SV-7-20-DUP	Labora	tory ID:			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1-Difluoroethane (Freon 152)	8.7	27	ug/m³ Air	TO-15	
Acetone	36	12	ug/m³ Air	TO-15	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	430	7.7	ug/m³ Air	TO-15	
Isopropyl alcohol	3.5	13	ug/m³ Air	TO-15	J
Bromodichloromethane	4.2	6.8	ug/m³ Air	TO-15	J
Carbon tetrachloride	9.1	6.4	ug/m³ Air	TO-15	
Chloroform	2.1	5.0	ug/m³ Air	TO-15	J
1,3-Dichlorobenzene	1.6	31	ug/m³ Air	TO-15	J
1,1-Dichloroethene	3.2	4.0	ug/m³ Air	TO-15	J
cis-1,2-Dichloroethene	1.5	4.0	ug/m³ Air	TO-15	J
Styrene	2.3	4.3	ug/m³ Air	TO-15	J
Tetrachloroethene	2300	6.9	ug/m³ Air	TO-15	
Trichloroethene	450	5.5	ug/m³ Air	TO-15	
Trichlorofluoromethane	6.7	5.7	ug/m³ Air	TO-15	
1,2,4-Trimethylbenzene	2.3	5.0	ug/m³ Air	TO-15	J
2-Butanone (MEK)	7.0	15	ug/m³ Air	TO-15	J
Benzene	0.73	3.3	ug/m³ Air	TO-15	J
Toluene	2.6	3.8	ug/m³ Air	TO-15	J
Ethylbenzene	0.66	4.4	ug/m³ Air	TO-15	J
m,p-Xylene	1.9	8.8	ug/m³ Air	TO-15	J
o-Xylene	0.99	4.4	ug/m³ Air	TO-15	J

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank Project Number: SM20-303682.1 Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-1-5 T211859-01(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratorie	s, Inc.					
TO-15										
1,1-Difluoroethane (Freon 152)	ND	3.3	27	ug/m³ Air	1.52	1060819	06/08/21	06/09/21	TO-15	
Acetone	19	0.49	12	"	"	"	"	"	"	
1,3-Butadiene	ND	0.29	4.5	"	"	"	"	"	"	
Carbon Disulfide	2.1	0.22	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroet hane (CFC 113)	170	0.26	7.7	"	"	"	"	"	"	
Isopropyl alcohol	2.9	0.55	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.16	6.8	"	"	"	"	"	"	
Bromoform	ND	0.23	11	"	"	"	"	"	"	
Bromomethane	ND	0.55	20	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.055	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.098	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.35	2.7	"	"	"	"	"	"	
Chloroform	ND	0.15	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.46	11	"	"	"	"	"	"	
Cyclohexane	ND	0.16	3.5	"	"	"	"	"	"	
Heptane	ND	0.15	4.2	"	"	"	"	"	"	
Hexane	ND	0.43	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.26	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.36	31	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.43	31	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.44	31	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.18	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.23	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.16	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.28	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	27	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.22	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.13	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	0.91	0.25	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-1-5 T211859-01(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratories	s, Inc.					
TO-15										
Methylene chloride	ND	0.079	27	ug/m³ Air	1.52	1060819	06/08/21	06/09/21	TO-15	
Styrene	5.5	0.19	4.3	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.54	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.25	3.0	"	"	"	"	"	"	
Tetrachloroethene	960	0.21	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.19	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.24	5.6	"	"	"	"	"	"	
Trichloroethene	7.1	0.21	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.24	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.49	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	4.6	0.33	5.0	"	"	"	"	"	"	J
Vinyl acetate	ND	0.18	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.052	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.97	18	"	"	"	"	"	"	
2-Butanone (MEK)	11	0.45	15	"	"	"	"	"	"	J
Methyl isobutyl ketone	ND	0.14	42	"	"	"	"	"	"	
Benzene	ND	0.14	3.3	"	"	"	"	"	"	
Toluene	5.1	0.14	3.8	"	"	"	"	"	"	
Ethylbenzene	ND	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	0.20	8.8	"	"	"	"	"	"	
o-Xylene	ND	0.085	4.4	"	"	"	"	"	"	

59.2-130

99.8 %

SunStar Laboratories, Inc.

Surrogate: 4-Bromofluorobenzene

H

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank
Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-2-5 T211859-02(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratorie	s, Inc.					
TO-15										
1,1-Difluoroethane (Freon 152)	9.1	3.3	27	ug/m³ Air	1.66	1060819	06/08/21	06/09/21	TO-15	
Acetone	38	0.49	12	"	"	"	"	"	"	
1,3-Butadiene	ND	0.29	4.5	"	"	"	"	"	"	
Carbon Disulfide	ND	0.22	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroet hane (CFC 113)	73	0.26	7.7	"	"	"	"	"	"	
Isopropyl alcohol	3.4	0.55	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.16	6.8	"	"	"	"	"	"	
Bromoform	ND	0.23	11	"	"	"	"	"	"	
Bromomethane	ND	0.55	20	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.055	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.098	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.35	2.7	"	"	"	"	"	"	
Chloroform	ND	0.15	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.46	11	"	"	"	"	"	"	
Cyclohexane	ND	0.16	3.5	"	"	"	"	"	"	
Heptane	ND	0.15	4.2	"	"	"	"	"	"	
Hexane	4.7	0.43	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.26	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.36	31	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.43	31	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.44	31	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.18	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.23	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.16	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.28	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.22	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.13	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	1.1	0.25	5.0	"	"	"	"		"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-2-5 T211859-02(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	aboratorie	s, Inc.					
TO-15										
Methylene chloride	ND	0.079	27	ug/m³ Air	1.66	1060819	06/08/21	06/09/21	TO-15	_
Styrene	7.6	0.19	4.3	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.54	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.25	3.0	"	"	"	"	"	"	
Tetrachloroethene	610	0.21	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.19	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.24	5.6	"	"	"	"	"	"	
Trichloroethene	4.4	0.21	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.24	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.49	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	5.6	0.33	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	0.18	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.052	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.97	18	"	"	"	"	"	"	
2-Butanone (MEK)	9.8	0.45	15	"	"	"	"	"	"	
Methyl isobutyl ketone	ND	0.14	42	"	"	"	"	"	"	
Benzene	ND	0.14	3.3	"	"	"	"	"	"	
Toluene	3.3	0.14	3.8	"	"	"	"	"	"	
Ethylbenzene	1.2	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	3.7	0.20	8.8	"	"	"	"	"	"	
o-Xylene	1.8	0.085	4.4	"	"	"	"	"	"	

99.2 %

59.2-130

SunStar Laboratories, Inc.

Surrogate: 4-Bromofluorobenzene

H

Reported: 06/11/21 09:58

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank
Project Number: SM20-303682.1

Project Manager: Bruce Eppler

SV-3-5 T211859-03(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratorie	s, Inc.					
TO-15										
1,1-Difluoroethane (Freon 152)	ND	3.3	27	ug/m³ Air	1.89	1060819	06/08/21	06/09/21	TO-15	
Acetone	34	0.49	12	"	"	"	"	"	"	
1,3-Butadiene	ND	0.29	4.5	"	"	"	"	"	"	
Carbon Disulfide	2.3	0.22	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroet hane (CFC 113)	110	0.26	7.7	"	"	"	"	"	"	
Isopropyl alcohol	3.3	0.55	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.16	6.8	"	"	"	"	"	"	
Bromoform	ND	0.23	11	"	"	"	"	"	"	
Bromomethane	ND	0.55	20	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.055	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.098	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.35	2.7	"	"	"	"	"	"	
Chloroform	0.94	0.15	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.46	11	"	"	"	"	"	"	
Cyclohexane	ND	0.16	3.5	"	"	"	"	"	"	
Heptane	ND	0.15	4.2	"	"	"	"	"	"	
Hexane	ND	0.43	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.26	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.36	31	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.43	31	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.44	31	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.18	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.23	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.16	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.28	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.22	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.13	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.25	5.0	,,	"	"	,,	,,	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-3-5 T211859-03(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratorie	s, Inc.					
TO-15										
Methylene chloride	ND	0.079	27	ug/m³ Air	1.89	1060819	06/08/21	06/09/21	TO-15	
Styrene	7.1	0.19	4.3	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.54	7.0	"	"	"	"	"	"	
Tetrahydrofuran	4.1	0.25	3.0	"	"	"	"	"	"	
Tetrachloroethene	910	0.21	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.19	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.24	5.6	"	"	"	"	"	"	
Trichloroethene	4.4	0.21	5.5	"	"	"	"	"	"	J
Trichlorofluoromethane	ND	0.24	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.49	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	6.0	0.33	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	0.18	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.052	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.97	18	"	"	"	"	"	"	
2-Butanone (MEK)	18	0.45	15	"	"	"	"	•	"	
Methyl isobutyl ketone	ND	0.14	42	"	"	"	"	"	"	
Benzene	1.4	0.14	3.3	"	"	"	"	"	"	J
Toluene	6.6	0.14	3.8	"	"	"	"	"	"	
Ethylbenzene	1.1	0.14	4.4	"	"	"	"	"	"	J
m,p-Xylene	4.2	0.20	8.8	"	"	"	"	"	"	
o-Xylene	1.8	0.085	4.4	"	"	"	"	"	"	J
Surrogate: 4-Bromofluorobenzene			102 %	59.2-	130	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project Number: SM20-303682.1 Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-4-5 T211859-04(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratorie	s, Inc.					
TO-15										
1,1-Difluoroethane (Freon 152)	7.7	3.3	27	ug/m³ Air	1.74	1060819	06/08/21	06/09/21	TO-15	
Acetone	43	0.49	12	"	"	"	"	"	"	
1,3-Butadiene	ND	0.29	4.5	"	"	"	"	"	"	
Carbon Disulfide	1.1	0.22	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroet hane (CFC 113)	54	0.26	7.7	"	"	"	"	"	"	
Isopropyl alcohol	5.6	0.55	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.16	6.8	"	"	"	"	"	"	
Bromoform	ND	0.23	11	"	"	"	"	"	"	
Bromomethane	ND	0.55	20	"	"	"	"	"	"	
Carbon tetrachloride	0.22	0.055	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.098	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.35	2.7	"	"	"	"	"	"	
Chloroform	4.8	0.15	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.46	11	"	"	"	"	"	"	
Cyclohexane	ND	0.16	3.5	"	"	"	"	"	"	
Heptane	ND	0.15	4.2	"	"	"	"	"	"	
Hexane	ND	0.43	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.26	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.36	31	"	"	"	"	"	"	
1,3-Dichlorobenzene	0.96	0.43	31	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.44	31	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.18	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.23	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.16	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.28	4.0	"	"	"	"	"	"	
eis-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.22	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.13	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.25	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.079	27	,,	,,	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-4-5 T211859-04(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratorie	s, Inc.					
TO-15										
Styrene	7.2	0.19	4.3	ug/m³ Air	1.74	1060819	06/08/21	06/09/21	TO-15	
1,1,2,2-Tetrachloroethane	ND	0.54	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.25	3.0	"	"	"	"	"	"	
Tetrachloroethene	340	0.21	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.19	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.24	5.6	"	"	"	"	"	"	
Trichloroethene	11	0.21	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.24	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.49	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	4.7	0.33	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	0.18	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.052	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.97	18	"	"	"	"	"	"	
2-Butanone (MEK)	8.7	0.45	15	"	"	"	"	"	"	
Methyl isobutyl ketone	ND	0.14	42	"	"	"	"	"	"	
Benzene	0.62	0.14	3.3	"	"	"	"	"	"	
Toluene	2.7	0.14	3.8	"	"	"	"	"	"	
Ethylbenzene	1.1	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	3.2	0.20	8.8	"	"	"	"	"	"	•
o-Xylene	1.6	0.085	4.4	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			99.7 %	59.2-	130	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank Project Number: SM20-303682.1

Reported: 06/11/21 09:58

SV-5-5 T211859-05(Air)

Project Manager: Bruce Eppler

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratorie	s, Inc.					
TO-15										
1,1-Difluoroethane (Freon 152)	ND	3.3	27	ug/m³ Air	1.85	1060819	06/08/21	06/09/21	TO-15	
Acetone	25	0.49	12	"	"	"	"	"	"	
1,3-Butadiene	ND	0.29	4.5	"	"	"	"	"	"	
Carbon Disulfide	ND	0.22	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroet hane (CFC 113)	58	0.26	7.7	"	"	"	"	"	"	
Isopropyl alcohol	110	0.55	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.16	6.8	"	"	"	"	"	"	
Bromoform	ND	0.23	11	"	"	"	"	"	"	
Bromomethane	ND	0.55	20	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.055	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.098	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.35	2.7	"	"	"	"	"	"	
Chloroform	0.92	0.15	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.46	11	"	"	"	"	"	"	
Cyclohexane	ND	0.16	3.5	"	"	"	"	"	"	
Heptane	ND	0.15	4.2	"	"	"	"	"	"	
Hexane	ND	0.43	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.26	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.36	31	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.43	31	"	"	"	"	"	"	
1,4-Dichlorobenzene	0.91	0.44	31	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.18	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.23	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.16	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.28	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.22	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.13	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	1.8	0.25	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank
Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-5-5 T211859-05(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	aboratorie	s Inc			·		
TO-15			Sunsial I	Laboratoric	<u>5, 1110.</u>					
Methylene chloride	6.9	0.079	27	ug/m³ Air	1.85	1060819	06/08/21	06/09/21	TO-15	
Metnylene chloride Styrene	6.9 7.1	0.079	4.3	ug/m³ Air	1.85	1000819	06/08/21	06/09/21	10-15	
1,1,2,2-Tetrachloroethane	7.1 ND	0.19	7.0	"	"	"	,,	"	"	
Tetrahydrofuran	ND	0.25	3.0	"	"	"	"	"	"	
Tetrachloroethene	240	0.21	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.19	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.24	5.6	"	"	"	"	"	"	
Trichloroethene	8.8	0.21	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.24	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.49	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	11	0.33	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	0.18	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.052	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.97	18	"	"	"	"	"	"	
2-Butanone (MEK)	ND	0.45	15	"	"	"	"	"	"	
Methyl isobutyl ketone	ND	0.14	42	"	"	"	"	"	"	
Benzene	0.60	0.14	3.3	"	"	"	"	"	"	
Гoluene	5.7	0.14	3.8	"	"	"	"	"	"	
Ethylbenzene	1.6	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	5.3	0.20	8.8	"	"	"	"	"	"	
o-Xylene	2.5	0.085	4.4	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			95.8 %	59.2-	130	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank Project Number: SM20-303682.1

Project Number: SM20-303682.1 Reported:
Project Manager: Bruce Eppler 06/11/21 09:58

SV-6-20 T211859-06(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratorie	s, Inc.					
TO-15										
1,1-Difluoroethane (Freon 152)	12	3.3	27	ug/m³ Air	1.76	1060819	06/08/21	06/09/21	TO-15	
Acetone	82	0.49	12	"	"	"	"	"	"	
1,3-Butadiene	ND	0.29	4.5	"	"	"	"	"	"	
Carbon Disulfide	ND	0.22	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroet hane (CFC 113)	280	0.26	7.7	"	"	"	"	"	"	
Isopropyl alcohol	9.4	0.55	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.16	6.8	"	"	"	"	"	"	
Bromoform	ND	0.23	11	"	"	"	"	"	"	
Bromomethane	ND	0.55	20	"	"	"	"	"	"	
Carbon tetrachloride	3.9	0.055	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.098	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.35	2.7	"	"	"	"	"	"	
Chloroform	0.87	0.15	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.46	11	"	"	"	"	"	"	
Cyclohexane	ND	0.16	3.5	"	"	"	"	"	"	
Heptane	ND	0.15	4.2	"	"	"	"	"	"	
Hexane	ND	0.43	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.26	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.36	31	"	"	"	"	"	"	
1,3-Dichlorobenzene	2.0	0.43	31	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.44	31	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.18	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.23	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.16	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.28	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.22	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.13	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	0.70	0.25	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.079	27	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank
Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-6-20 T211859-06(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratorie	s, Inc.					
TO-15										
Styrene	7.1	0.19	4.3	ug/m³ Air	1.76	1060819	06/08/21	06/09/21	TO-15	
1,1,2,2-Tetrachloroethane	ND	0.54	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.25	3.0	"	"	"	"	"	"	
Tetrachloroethene	1000	0.21	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.19	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.24	5.6	"	"	"	"	"	"	
Trichloroethene	81	0.21	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	3.6	0.24	5.7	"	"	"	"	"	"	J
1,3,5-Trimethylbenzene	ND	0.49	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	4.9	0.33	5.0	"	"	"	"	"	"	J
Vinyl acetate	ND	0.18	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.052	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.97	18	"	"	"	"	"	"	
2-Butanone (MEK)	31	0.45	15	"	"	"	"	"	"	
Methyl isobutyl ketone	ND	0.14	42	"	"	"	"	"	"	
Benzene	0.97	0.14	3.3	"	"	"	"	"	"	J
Toluene	3.6	0.14	3.8	"	"	"	"	"	"	J
Ethylbenzene	ND	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	0.20	8.8	"	"	"	"	"	"	
o-Xylene	ND	0.085	4.4	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			98.1 %	59.2-	130	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank Project Number: SM20-303682.1

Reported: 06/11/21 09:58

SV-7-20 T211859-07(Air)

Project Manager: Bruce Eppler

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratorie	s, Inc.					
TO-15										
1,1-Difluoroethane (Freon 152)	ND	3.3	27	ug/m³ Air	1.82	1060819	06/08/21	06/09/21	TO-15	
Acetone	42	0.49	12	"	"	"	"	"	"	
1,3-Butadiene	ND	0.29	4.5	"	"	"	"	"	"	
Carbon Disulfide	ND	0.22	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroet hane (CFC 113)	460	0.26	7.7	"	"	"	"	"	"	
Isopropyl alcohol	3.5	0.55	13	"	"	"	"	"	"	
Bromodichloromethane	4.2	0.16	6.8	"	"	"	"	"	"	
Bromoform	ND	0.23	11	"	"	"	"	"	"	
Bromomethane	ND	0.55	20	"	"	"	"	"	"	
Carbon tetrachloride	9.7	0.055	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.098	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.35	2.7	"	"	"	"	"	"	
Chloroform	2.4	0.15	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.46	11	"	"	"	"	"	"	
Cyclohexane	ND	0.16	3.5	"	"	"	"	"	"	
Heptane	ND	0.15	4.2	"	"	"	"	"	"	
Hexane	ND	0.43	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.26	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.36	31	"	"	"	"	"	"	
1,3-Dichlorobenzene	1.6	0.43	31	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.44	31	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.18	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.23	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.16	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	3.6	0.28	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.22	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.13	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	0.73	0.25	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.079	27	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-7-20 T211859-07(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
				aboratorie						
TO-15										
Styrene	4.0	0.19	4.3	ug/m³ Air	1.82	1060819	06/08/21	06/09/21	TO-15	J
1,1,2,2-Tetrachloroethane	ND	0.54	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.25	3.0	"	"	"	"	"	"	
Tetrachloroethene	2400	0.21	6.9	"	9.1	"	"	"	"	
1,1,2-Trichloroethane	ND	0.19	5.6	"	1.82	"	"	"	"	
1,1,1-Trichloroethane	0.91	0.24	5.6	"	"	"	"	"	"	J
Trichloroethene	480	0.21	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	6.9	0.24	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.49	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	4.4	0.33	5.0	"	"	"	"	"	"	J
Vinyl acetate	ND	0.18	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.052	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.97	18	"	"	"	"	"	"	
2-Butanone (MEK)	11	0.45	15	"	"	"	"	"	"	J
Methyl isobutyl ketone	ND	0.14	42	"	"	"	"	"	"	
Benzene	0.95	0.14	3.3	"	"	"	"	"	"	J
Toluene	3.3	0.14	3.8	"	"	"	"	"	"	J
Ethylbenzene	1.4	0.14	4.4	"	"	"	"	"	"	J
m,p-Xylene	3.6	0.20	8.8	"	"	"	"	"	"	J
o-Xylene	1.4	0.085	4.4	"	"	"	"	"	"	J
Surrogate: 4-Bromofluorobenzene			100 %	59.2-	130	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank Project Number: SM20-303682.1 Project Manager: Bruce Eppler

Reported:

06/11/21 09:58

SV-8-20 T211859-08(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratorie	s, Inc.					
TO-15										
1,1-Difluoroethane (Freon 152)	7.2	3.3	27	ug/m³ Air	1.9	1060819	06/08/21	06/09/21	TO-15	
Acetone	57	0.49	12	"	"	"	"	"	"	
1,3-Butadiene	ND	0.29	4.5	"	"	"	"	"	"	
Carbon Disulfide	2.2	0.22	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroet hane (CFC 113)	190	0.26	7.7	"	"	"	"	"	"	
Isopropyl alcohol	3.4	0.55	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.16	6.8	"	"	"	"	"	"	
Bromoform	ND	0.23	11	"	"	"	"	"	"	
Bromomethane	ND	0.55	20	"	"	"	"	"	"	
Carbon tetrachloride	4.7	0.055	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.098	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.35	2.7	"	"	"	"	"	"	
Chloroform	2.1	0.15	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.46	11	"	"	"	"	"	"	
Cyclohexane	ND	0.16	3.5	"	"	"	"	"	"	
Heptane	ND	0.15	4.2	"	"	"	"	"	"	
Hexane	ND	0.43	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.26	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.36	31	"	"	"	"	"	"	
1,3-Dichlorobenzene	2.3	0.43	31	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.44	31	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.18	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.23	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.16	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.28	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.22	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.13	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.25	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.079	27	"	"	"	"		"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank Project Number: SM20-303682.1

Project Number: SM20-303682.1 Reported:
Project Manager: Bruce Eppler 06/11/21 09:58

SV-8-20 T211859-08(Air)

					•					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratorie	s, Inc.					
TO-15										
Styrene	8.0	0.19	4.3	ug/m³ Air	1.9	1060819	06/08/21	06/09/21	TO-15	
1,1,2,2-Tetrachloroethane	ND	0.54	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.25	3.0	"	"	"	"	"	"	
Tetrachloroethene	990	0.21	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.19	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	1.3	0.24	5.6	"	"	"	"	"	"	
Trichloroethene	220	0.21	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	4.4	0.24	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.49	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	7.9	0.33	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	0.18	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.052	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.97	18	"	"	"	"	"	"	
2-Butanone (MEK)	21	0.45	15	"	"	"	"	"	"	
Methyl isobutyl ketone	ND	0.14	42	"	"	"	"	"	"	
Benzene	1.2	0.14	3.3	"	"	"	"	"	"	
Toluene	3.6	0.14	3.8	"	"	"	"	"	"	
Ethylbenzene	3.6	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	6.3	0.20	8.8	"	"	"	"	"	"	,
o-Xylene	2.6	0.085	4.4	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			98.1 %	59.2-	130	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project Number: SM20-303682.1 Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-9-20 T211859-09(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratorie	s, Inc.					
TO-15										
1,1-Difluoroethane (Freon 152)	15			ug/m³ Air	1.87	1060819	06/08/21	06/10/21	TO-15	
Acetone	70	0.49	12	"	"	"	"	"	"	
1,3-Butadiene	ND	0.29	4.5	"	"	"	"	"	"	
Carbon Disulfide	ND	0.22	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroet hane (CFC 113)	200	0.26	7.7	"	"	"	"	"	"	
Isopropyl alcohol	7.4	0.55	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.16	6.8	"	"	"	"	"	"	
Bromoform	ND	0.23	11	"	"	"	"	"	"	
Bromomethane	ND	0.55	20	"	"	"	"	"	"	
Carbon tetrachloride	6.0	0.055	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.098	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.35	2.7	"	"	"	"	"	"	
Chloroform	ND	0.15	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.46	11	"	"	"	"	"	"	
Cyclohexane	ND	0.16	3.5	"	"	"	"	"	"	
Heptane	ND	0.15	4.2	"	"	"	"	"	"	
Hexane	ND	0.43	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.26	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.36	31	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.43	31	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.44	31	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.18	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.23	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.16	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.28	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	2.5	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.22	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.13	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	15	0.25	5.0	"	"	"	"	"	"	
Methylene chloride	13	0.079	27	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-9-20 T211859-09(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratorie	s, Inc.					
TO-15										
Styrene	5.7	0.19	4.3	ug/m³ Air	1.87	1060819	06/08/21	06/10/21	TO-15	
1,1,2,2-Tetrachloroethane	ND	0.54	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.25	3.0	"	"	"	"	"	"	
Tetrachloroethene	1500	0.21	6.9	"	9.35	"	"	"	"	
1,1,2-Trichloroethane	ND	0.19	5.6	"	1.87	"	"	"	"	
1,1,1-Trichloroethane	ND	0.24	5.6	"	"	"	"	"	"	
Trichloroethene	280	0.21	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	3.8	0.24	5.7	"	"	"	"	"	"	J
1,3,5-Trimethylbenzene	13	0.49	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	83	0.33	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	0.18	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.052	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.97	18	"	"	"	"	"	"	
2-Butanone (MEK)	20	0.45	15	"	"	"	"	"	"	
Methyl isobutyl ketone	ND	0.14	42	"	"	"	"	"	"	
Benzene	12	0.14	3.3	"	"	"	"	•	"	
Toluene	6.2	0.14	3.8	"	"	"	"	"	"	
Ethylbenzene	84	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	110	0.20	8.8	"	"	"	"	"	"	
o-Xylene	29	0.085	4.4	"	"	"	"	"	"	

94.6 %

59.2-130

SunStar Laboratories, Inc.

Surrogate: 4-Bromofluorobenzene

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank

Project Number: SM20-303682.1 Project Manager: Bruce Eppler **Reported:** 06/11/21 09:58

SV-4-5-DUP T211859-10(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratorie	s, Inc.					
TO-15										
1,1-Difluoroethane (Freon 152)	6.3	3.3	27	ug/m³ Air	1.75	1060819	06/08/21	06/10/21	TO-15	
Acetone	25	0.49	12	"	"	"	"	"	"	
1,3-Butadiene	ND	0.29	4.5	"	"	"	"	"	"	
Carbon Disulfide	ND	0.22	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroet hane (CFC 113)	59	0.26	7.7	"	"	"	"	"	"	
Isopropyl alcohol	ND	0.55	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.16	6.8	"	"	"	"	"	"	
Bromoform	ND	0.23	11	"	"	"	"	"	"	
Bromomethane	ND	0.55	20	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.055	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.098	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.35	2.7	"	"	"	"	"	"	
Chloroform	1.1	0.15	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.46	11	"	"	"	"	"	"	
Cyclohexane	ND	0.16	3.5	"	"	"	"	"	"	
Heptane	ND	0.15	4.2	"	"	"	"	"	"	
Hexane	ND	0.43	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.26	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.36	31	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.43	31	"	"	"	"	"	"	
1,4-Dichlorobenzene	3.3	0.44	31	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.18	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.23	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.16	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.28	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.22	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.13	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	0.96	0.25	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501

Project: Marriott- Burbank Project Number: SM20-303682.1 Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-4-5-DUP T211859-10(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratorie	s, Inc.					
TO-15										
Methylene chloride	ND	0.079	27	ug/m³ Air	1.75	1060819	06/08/21	06/10/21	TO-15	
Styrene	5.8	0.19	4.3	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.54	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.25	3.0	"	"	"	"	"	"	
Tetrachloroethene	360	0.21	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.19	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	1.9	0.24	5.6	"	"	"	"	"	"	
Trichloroethene	77	0.21	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.24	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.49	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	4.6	0.33	5.0	"	"	"	"	"	"	į
Vinyl acetate	ND	0.18	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.052	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.97	18	"	"	"	"	"	"	
2-Butanone (MEK)	4.7	0.45	15	"	"	"	"	"	"	
Methyl isobutyl ketone	ND	0.14	42	"	"	"	"	"	"	
Benzene	0.57	0.14	3.3	"	"	"	"	"	"	
Toluene	3.0	0.14	3.8	"	"	"	"	"	"	
Ethylbenzene	1.3	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	3.9	0.20	8.8	"	"	"	"	"	"	
o-Xylene	1.6	0.085	4.4	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			97.3 %	59.2-	130	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank
Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-7-20-DUP T211859-11(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratorie	s, Inc.					
ГО-15										
1,1-Difluoroethane (Freon 152)	8.7	3.3	27	ug/m³ Air	1.86	1060819	06/08/21	06/10/21	TO-15	
Acetone	36	0.49	12	"	"	"	"	"	"	
1,3-Butadiene	ND	0.29	4.5	"	"	"	"	"	"	
Carbon Disulfide	ND	0.22	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroet hane (CFC 113)	430	0.26	7.7	"	"	"	"	"	"	
Isopropyl alcohol	3.5	0.55	13	"	"	"	"	"	"	
Bromodichloromethane	4.2	0.16	6.8	"	"	"	"	"	"	
Bromoform	ND	0.23	11	"	"	"	"	"	"	
Bromomethane	ND	0.55	20	"	"	"	"	"	"	
Carbon tetrachloride	9.1	0.055	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.098	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.35	2.7	"	"	"	"	"	"	
Chloroform	2.1	0.15	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.46	11	"	"	"	"	"	"	
Cyclohexane	ND	0.16	3.5	"	"	"	"	"	"	
Heptane	ND	0.15	4.2	"	"	"	"	"	"	
Hexane	ND	0.43	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.26	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.36	31	"	"	"	"	"	"	
1,3-Dichlorobenzene	1.6	0.43	31	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.44	31	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.18	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.23	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.16	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	3.2	0.28	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	1.5	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.22	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.13	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.25	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.079	27	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank
Project Number: SM20-303682.1

Project Manager: Bruce Eppler

Reported: 06/11/21 09:58

SV-7-20-DUP T211859-11(Air)

				`	*					
			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratorie	s, Inc.					
TO-15										
Styrene	2.3	0.19	4.3	ug/m³ Air	1.86	1060819	06/08/21	06/10/21	TO-15	
1,1,2,2-Tetrachloroethane	ND	0.54	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.25	3.0	"	"	"	"	"	"	
Tetrachloroethene	2300	0.21	6.9	"	9.3	"	"	"	"	
1,1,2-Trichloroethane	ND	0.19	5.6	"	1.86	"	"	"	"	
1,1,1-Trichloroethane	ND	0.24	5.6	"	"	"	"	"	"	
Trichloroethene	450	0.21	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	6.7	0.24	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.49	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	2.3	0.33	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	0.18	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.052	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.97	18	"	"	"	"	"	"	
2-Butanone (MEK)	7.0	0.45	15	"	"	"	"	"	"	
Methyl isobutyl ketone	ND	0.14	42	"	"	"	"	"	"	
Benzene	0.73	0.14	3.3	"	"	"	"	"	"	
Toluene	2.6	0.14	3.8	"	"	"	"	"	"	
Ethylbenzene	0.66	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	1.9	0.20	8.8	"	"	"	"	"	"	
o-Xylene	0.99	0.085	4.4	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			98.4 %	59.2-	130	"	"	"	"	
•										

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank

Project Number: SM20-303682.1 Project Manager: Bruce Eppler **Reported:** 06/11/21 09:58

TO-15 - Quality Control

SunStar Laboratories, Inc.

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1060819 - Canister Analysis

Blank (1060819-BLK1)				P	repared: 06/0	08/21 Analyzed: 0	6/09/21	
Surrogate: 4-Bromofluorobenzene	354		ив	g/m³ Air	362	97.8	59.2-130	
1,1-Difluoroethane (Freon 152)	ND	3.3	27	"				
Acetone	ND	0.49	12	"				
1,3-Butadiene	ND	0.29	4.5	"				
Carbon Disulfide	ND	0.22	3.2	"				
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	0.26	7.7	"				
Isopropyl alcohol	ND	0.55	13	"				
Bromodichloromethane	ND	0.16	6.8	"				
Bromoform	ND	0.23	11	"				
Bromomethane	ND	0.55	20	"				
Carbon tetrachloride	ND	0.055	6.4	"				
Chlorobenzene	ND	0.098	4.7	"				
Chloroethane	ND	0.35	2.7	"				
Chloroform	ND	0.15	5.0	"				
Chloromethane	ND	0.46	11	"				
Cyclohexane	ND	0.16	3.5	"				
Heptane	ND	0.15	4.2	"				
Hexane	ND	0.43	3.6	"				
Dibromochloromethane	ND	0.26	8.7	"				
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"				
1,2-Dichlorobenzene	ND	0.36	31	"				
1,3-Dichlorobenzene	ND	0.43	31	"				
1,4-Dichlorobenzene	ND	0.44	31	"				
Dichlorodifluoromethane	ND	0.18	5.0	"				
1,1-Dichloroethane	ND	0.23	4.1	"				
1,2-Dichloroethane	ND	0.16	4.1	"				

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank

Project Number: SM20-303682.1 Project Manager: Bruce Eppler **Reported:** 06/11/21 09:58

TO-15 - Quality Control

SunStar Laboratories, Inc.

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1060819 - Canister Analysis

Blank (1060819-BLK1)			Prepared: 06/08/21 Analyzed: 06/09/21
1,1-Dichloroethene	ND	0.28	4.0 ug/m³ Air
cis-1,2-Dichloroethene	ND	0.25	4.0 "
trans-1,2-Dichloroethene	ND	0.22	4.0 "
1,2-Dichloropropane	ND	0.13	4.7 "
cis-1,3-Dichloropropene	ND	0.21	4.6 "
trans-1,3-Dichloropropene	ND	0.21	4.6 "
4-Ethyltoluene	ND	0.25	5.0 "
Methylene chloride	ND	0.079	27 "
Styrene	ND	0.19	4.3 "
1,1,2,2-Tetrachloroethane	ND	0.54	7.0 "
Tetrahydrofuran	ND	0.25	3.0 "
Tetrachloroethene	ND	0.21	6.9 "
1,1,2-Trichloroethane	ND	0.19	5.6 "
1,1,1-Trichloroethane	ND	0.24	5.6 "
Trichloroethene	ND	0.21	5.5 "
Trichlorofluoromethane	ND	0.24	5.7 "
1,3,5-Trimethylbenzene	ND	0.49	5.0 "
1,2,4-Trimethylbenzene	ND	0.33	5.0 "
Vinyl acetate	ND	0.18	3.6 "
Vinyl chloride	ND	0.052	2.6 "
1,4-Dioxane	ND	0.97	18 "
2-Butanone (MEK)	ND	0.45	15 "
Methyl isobutyl ketone	ND	0.14	42 "
Benzene	ND	0.14	3.3 "
Toluene	ND	0.14	3.8 "
Ethylbenzene	ND	0.14	4.4 "
m,p-Xylene	ND	0.20	8.8 "

SunStar Laboratories, Inc.

H

RPD

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott- Burbank Project Number: SM20-303682.1

Spike

Source

Project Number: SM20-303682.1 Reported:
Project Manager: Bruce Eppler 06/11/21 09:58

%REC

TO-15 - Quality Control

SunStar Laboratories, Inc.

Reporting

			Reporting		Spike .	Source		/0KEC		KrD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1060819 - Canister Analysis											
Blank (1060819-BLK1)					Prepared: 06/0	08/21 An	nalyzed: 06	5/09/21			
o-Xylene	ND	0.085	4.4	ug/m³ Air							
Duplicate (1060819-DUP1)		Source:	Г211792-01		Prepared: 06/0	08/21 An	nalyzed: 06	5/09/21			
Surrogate: 4-Bromofluorobenzene	335			ug/m³ Air	362		92.6	59.2-130			
1,1-Difluoroethane (Freon 152)	ND	3.3	27	"		ND					
Acetone	88.3	0.49	12	"		94.4			6.69	30	
1,3-Butadiene	54.5	0.29	4.5	"		55.4			1.68	30	
Carbon Disulfide	8.86	0.22	3.2	"		8.97			1.21	30	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	0.26	7.7	"		ND				30	
Isopropyl alcohol	4.15	0.55	13	"		3.42			19.2	30	
Bromodichloromethane	ND	0.16	6.8	"		ND				30	
Bromoform	ND	0.23	11	"		ND				30	
Bromomethane	ND	0.55	20	"		ND				30	
Carbon tetrachloride	1.53	0.055	6.4	"		1.10			33.3	30	DUP-01,
Chlorobenzene	ND	0.098	4.7	"		ND				30	
Chloroethane	ND	0.35	2.7	"		ND				30	
Chloroform	5.44	0.15	5.0	"		5.44			0.00	30	
Chloromethane	ND	0.46	11	"		ND				30	
Cyclohexane	13.5	0.16	3.5	"		13.2			2.25	30	
Heptane	21.4	0.15	4.2	"		19.7			8.30	30	
Hexane	96.7	0.43	3.6	"		97.4			0.695	30	
Dibromochloromethane	1.63	0.26	8.7	"		1.04			44.4	30	DUP-01,
1,2-Dibromoethane (EDB)	2.14	0.18	7.8	"		1.07			66.7	30	DUP-01,
1,2-Dichlorobenzene	2.41	0.36	31	"		1.05			78.8	30	DUP-01,
1,3-Dichlorobenzene	ND	0.43	31	"		1.36				30	
1,4-Dichlorobenzene	2.72	0.44	31	"		1.46			60.0	30	DUP-01,
Dichlorodifluoromethane	ND	0.18	5.0	"		ND				30	

SunStar Laboratories, Inc.

Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501 Project: Marriott-Burbank

Project Number: SM20-303682.1 Project Manager: Bruce Eppler **Reported:** 06/11/21 09:58

TO-15 - Quality Control

SunStar Laboratories, Inc.

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1060819 - Canister Analysis

Duplicate (1060819-DUP1)		Source: T	211792-01		Prepared: 06/08/21 Analyzed: 06/09/21			
1,1-Dichloroethane	ND	0.23	4.1 ug/r	m³ Air	ND		30	
1,2-Dichloroethane	ND	0.16	4.1	"	ND		30	
1,1-Dichloroethene	ND	0.28	4.0	"	ND		30	
cis-1,2-Dichloroethene	1.03	0.25	4.0	"	ND		30	J
trans-1,2-Dichloroethene	ND	0.22	4.0	"	ND		30	
1,2-Dichloropropane	ND	0.13	4.7	"	ND		30	
cis-1,3-Dichloropropene	1.18	0.21	4.6	"	0.711	50.0	30	DUP-01, J
trans-1,3-Dichloropropene	1.66	0.21	4.6	"	0.632	89.7	30	DUP-01, J
4-Ethyltoluene	4.36	0.25	5.0	"	3.50	21.7	30	J
Methylene chloride	ND	0.079	27	"	ND		30	
Styrene	3.26	0.19	4.3	"	2.15	41.1	30	DUP-01, J
1,1,2,2-Tetrachloroethane	ND	0.54	7.0	"	ND		30	
Tetrahydrofuran	ND	0.25	3.0	"	ND		30	
Tetrachloroethene	ND	0.21	6.9	"	2.12		30	
1,1,2-Trichloroethane	ND	0.19	5.6	"	ND		30	
1,1,1-Trichloroethane	1.04	0.24	5.6	"	0.665	44.4	30	DUP-01, J
Trichloroethene	1.40	0.21	5.5	"	0.748	60.9	30	DUP-01, J
Trichlorofluoromethane	ND	0.24	5.7	"	ND		30	
1,3,5-Trimethylbenzene	ND	0.49	5.0	"	ND		30	
1,2,4-Trimethylbenzene	12.7	0.33	5.0	"	11.9	6.27	30	
Vinyl acetate	ND	0.18	3.6	"	ND		30	
Vinyl chloride	ND	0.052	2.6	"	ND		30	
1,4-Dioxane	ND	0.97	18	"	ND		30	
2-Butanone (MEK)	42.3	0.45	15	"	41.6	1.71	30	
Methyl isobutyl ketone	ND	0.14	42	"	4.63		30	
Benzene	24.4	0.14	3.3	"	24.3	0.228	30	
Toluene	68.6	0.14	3.8	"	68.4	0.287	30	

SunStar Laboratories, Inc.

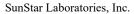
Partner Engineering & Science, Inc.--Tor

2154 Torrance Blvd., Suite 200 Torrance CA, 90501

Project: Marriott-Burbank Project Number: SM20-303682.1 Project Manager: Bruce Eppler

Reported:

06/11/21 09:58


TO-15 - Quality Control

SunStar Laboratories, Inc.

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1060819 - Canister Analysis

Duplicate (1060819-DUP1)		Source: T211	792-01	Prepared: 06/08/21 Analyzed:	06/09/21	
Ethylbenzene	11.0	0.14	4.4 ug/m³ Ai	r 9.97	9.39	30
m,p-Xylene	36.0	0.20	8.8 "	35.4	1.90	30
o-Xylene	12.0	0.085	4.4 "	11.9	1.27	30

Partner Engineering & Science, Inc.--Tor Project: Marriott- Burbank

2154 Torrance Blvd., Suite 200Project Number:SM20-303682.1Reported:Torrance CA, 90501Project Manager:Bruce Eppler06/11/21 09:58

Notes and Definitions

J Detected but below the Standard Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

DUP-01 The RPD result exceeded the QC control limits for this analyte; sample results for the QC batch were accepted based on acceptable

RPD for remaining analytes as well as acceptable BS and/or CCV recoveries.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the Method Detection Limit (MDL)

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

AIR LABORATORY

Chain of Custody Record

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Client: Pathe Engineery & Science Address: 2157 Towance BILL, Towance 9050 Phone: 916-532-0670 Fax: Project Manager: Buce Eppler	Date: 06/03/201 Page: Of Project Name: Mamor Bubank Collector: L. Kim, J. Nareno Client Project #: 5M 70 - 303 682 - 1 Batch #: T21859 EDF #:
Sample ID Date Start Time Time Summa Can / Tedlar SV-1-5 X-3-2 845 954 SC Summa Can / Tedlar SV-2-5 908 914 SV-4-5 908 914 SV-4-5 908 914 SV-6-20 1016 (97)	10
5V-7-20 1058 1103 5V-9-20 1034 1040 5V-9-30 1120 1125 5V-1-5-DVP 953 958 5V-1-20-74P 1103 1109	-18 -5 × 0104 2117 -28 -6 × 0127 2111 -28 -5 × 0127 2117 -29 -5 × 0112 2117 -76 -5 × 0112 2117 -76 -5 × 0112 2117
Relinquished by: (signature) Relinquished by: (signature) Pate / Time Received by: (signature) Relinquished by: (signature) Relinquished by: (signature) Date / Time Received by: (signature)	Date / Time 1

SAMPLE RECEIVING REVIEW SHEET

Batch/Work Order #: 72 11859				. •	
Client Name: Partuer	Project:	M	arriott	Burbank	
Delivered by: Client SunStar Co	urier 🗌 GLS	FedEx	□ UPS		
If Courier, Received by:	Date/Time Co Received:	_6	S.4.21	810)
Lab Received by:	Date/Time Lai Received:		5.4.21	910	
Total number of coolers received: Thermome	ter ID: SC-GUN		Calibrati	on due :8/17/21	1
Temperature: Cooler #1 °C +/- the CF (°C) =	°C correct	ted temperati	ure	
Temperature: Cooler #2 °C +/- the CF (°C) =	°C correct	ted temperati	ure	
Temperature: Cooler #3 °C +/- the CF (°C) =	°C correct	ted temperat	ure	
Temperature criteria = $\leq 6^{\circ}$ C (no frozen containers)	hin criteria?	☐Yes	□No	N/A	
If on ice samples received same day	es → Acceptable	□No →		nformance She	
Custody seals intact on cooler/sample	·	∐Yes	□No*	N/A	
Sample containers intact	•	Yes	□No*		
Sample labels match Chain of Custody IDs		Yes	□No*	•	
Total number of containers received match COC		Yes	∐No*		
Proper containers received for analyses requested on CC	OC	Yes	□No*		
Proper preservative indicated on COC/containers for an	alyses requested	∐Yes	□No*	⊠N/A	
Complete shipment received in good condition with corcontainers, labels, volumes preservatives and within me holding times	_	Yes	□No*		
* Complete Non-Conformance Receiving Sheet if checked	Cooler/Sample Revi	iew - Initials	and date:	80 5-4	٠2 (
Comments:					

7211859

Project Name: MAR	RIOTT BURBANK				Rebecca
Company: PARTNE	R				DD
Name: BRUCE					ן טט
ltem		Quantity		Unit	
2 oz Jars 24/CS	Andread Commencer (Commencer Commencer Commenc		SECTION AND ADDRESS.		5-7m %
4 oz dars 24/CS	PROPERTY AND ADMINISTRATION OF A STREET		A THE STATE OF THE STATE OF		
8.oz Jare 12/CS	CONTRACTOR OF THE STATE OF THE	10.00			43777
40 ml unpreserved V0	D As 100/box	14 (14 (14 (14 (14 (14 (14 (14 (14 (14 (Approximation (Control
40 ml HCL-preserved	VOAs 72/box for the first of the	100	and the Comment		200
250 miliPoly 24/CS	Andreas (Control of Control of Co	10 10 10 10 10 10 10 10 10 10 10 10 10 1		and the same of th	and the second second
500 mt/Roly 16/68		100	100	100 M	A History and History
1 Liter Poly 12/CS	The state of the s				transfer de
500 mil/Amben Bottle		and the state of	and the second		
1 Liter Amber Bottle			F 1		
1) Gelloni Poly, 44 box is		3 2 2 3			
5035 kits:(2)Sodium E	Bisulfate VOAs 72/box				
	(1) Methanol VOA 72/box				
	(1)Syringe 50/pack	ļ			
Lock-N-Load Handle	1/ea	↓			
Tedlar Bags 10/pack		<u> </u>			
Sub Slab Insert w/ wa		1			·
Soil Gas SS 16" Drop	·				
Gas Extraction Fitting	js				L
Soil Gas Filters		<u> </u>			
	Volume of Summa	# Sent	Used	Unused	Unreturned
Batala Cantifical	400cc	ļ	100000000000000000000000000000000000000		
Batch Certified	1L	10+1	CHARGE 10	1	0
Summa Canisters	3L	 			
D	6L		NO OLIABOR		
Purge cans	1	2	NO CHARGE	0	0
Nitrogen cans	1L	3	NO CHARGE	0	0
Ind. Cerified	1L				
Summa Cannisters	3L	 			
62/152 Manifolds	6L , Var. Sampler, etc. Calibra	ted Correct	v. Gauga Par	ads at 0	DB
	oler, Variable Sampler, Shut		<u> </u>	CHARGE 2	<u>DB</u>
•	50ml/mn, 63ml/mn	10 N/F	CHARGE 10	CHARGE 2	
Swagelok Fittings: No		1010/	CHARGE 10		
Cooler (Sm, Med, Lrg		 			
Other: Poly Tube, Valv	<u> </u>	 			
Prepared By	DIB		Date:	-5/26/21	
Reviewed By			Date:		
Comments:					
Gada-Balan Eas	usa ka sakuma a alas/a\ makka	n 20 days -1	ropoint as if t	ha ratiumad	
	re to return cooler(s) withi				
cooler(s) are in unus	able condition, will result in	n a \$50 per o	cooler tee tor	repiacemen	i cosis.

Asset Check-In Receipt

SunStar Laboratories Inc.

Check-In Date: 6/4/2021

User Name: Berner, Dave

TZ11859

Asset Tag	Asset Type	Serial No	Location	Customer No.	Customer Name
0080	1000cc: 1000cc Summa	0080	Sunstar Labs, Tustin Air Lab	Partner-Bruce	Bruce Eppler
0104	1000cc: 1000cc Summa	0104	Sunstar Labs, Tustin Air Lab	Partner-Bruce	Bruce Eppler
0112	1000cc: 1000cc Summa	0112	Sunstar Labs, Tustin Air Lab	Partner-Bruce	Bruce Eppler
0115	1000cc: 1000cc Summa	0115	Sunstar Labs, Tustin Air Lab	Partner-Bruce	Bruce Eppler
0127	1000cc: 1000cc Summa	0127	Sunstar Labs, Tustin Air Lab	Partner-Bruce	Bruce Eppler
0161	1000cc: 1000cc Summa	0161	Sunstar Labs, Tustin Air Lab	Partner-Bruce	Bruce Eppler
0174	1000cc: 1000cc Summa	0174	Sunstar Labs, Tustin Air Lab	Partner-Bruce	Bruce Eppler
0392	1000cc: 1000cc Summa	0392	Sunstar Labs, Lake Forest Air Lab	Partner-Bruce	Bruce Eppler
0401	1000cc: 1000cc Summa	0401	Sunstar Labs, Tustin Air Lab	Partner-Bruce	Bruce Eppler
0808	1000cc: 1000cc Summa	0808	Sunstar Labs, SunStar Labs - South	Partner-Bruce	Bruce Eppler
0852	1000cc: 1000cc Summa	0852	Sunstar Labs, SunStar Labs - South	Partner-Bruce	Bruce Eppler
0867	1000cc: 1000cc Summa	0867	Sunstar Labs, SunStar Labs - South	Partner-Bruce	Bruce Eppler
2089	Chameleon-150: Chameleon 150 Manifold	2089	Sunstar Labs, SunStar Labs - South	Partner-Bruce	Bruce Eppler
2111	Chameleon-150: Chameleon 150 Manifold	2111	Sunstar Labs, SunStar Labs - South	Partner-Bruce	Bruce Eppler
2117	Chameleon-150: Chameleon 150 Manifold	2117	Sunstar Labs, SunStar Labs - South	Partner-Bruce	Bruce Eppler
510	1000cc: 1000cc Summa		Sunstar Labs, Tustin Air Lab	Partner-Bruce	Bruce Eppler
580	1000cc: 1000cc Summa		Sunstar Labs, Tustin Air Lab	Partner-Bruce	Bruce Eppler
715	1000cc: 1000cc Summa		Sunstar Labs, Tustin Air Lab	Partner-Bruce	Bruce Eppler

Rev. 03 Date: 02/20

Receiving Form 002

7211859

* PLEASE DO **NOT** WRITE ON OR PLACE LABELS ON SUMMA CANS

Canister Data Sheet

Client:		PAR	TNER_BRUCI	E_5-26-21_16+3_MA	RRIOTT BU	RBANK			;
	uge: REC-3 uge: REC-4	Used to Verify:	X	SN: 145026	Caibrated On:	2/5/2020	Next Ca	libration Due:	2/5/2021
		Used to Verify: CHECK	Pressure	SN: 145025	Caibrated On:	7.07		libration Due:	2/5/2021
Canister S	Serial #	Date	(-28 -to -30 InHg)	Sample ID	Sample Date	Initial	Final	Sample	Sample
SSAT:	0401	5/26/2021	-30	5V-7-20-17UP	06/03	Pressure -78	Pressure	Start Time	Finish Time
SSAT:	0174	5/26/2021	-30	01-7-72	06/03	T	-5	1050	109
SSAT:	0104	5/26/2021	-30	SV-6-20		-ZB		1058	103
SSAT:	0127	5/26/2021	-30	SV - 8-20	06 (03	-28 -28	-5	10/6	1021
SSAT:	0080	5/26/2021	-30	511-2-5	06/03	-28	-5	925	640
SSAT:	0161	5/26/2021	-30	51-4-5	06/03	-28	5	100	931
SSAT:	0112	5/26/2021	-30	51-4-5-70	06/03	-28	-5	942	
SSAT:	0115	5/26/2021	-30	SV-5-5	06/03	- 29	-5	821	958 877
SSAT:	0680	5/26/2021	-30	SU-3-5	06/63	-29	-5	908	211
SSAT:	0715	5/26/2021	-30	SU-9-70	06/03	-26		(120)	
SSAT:	0610	5/26/2021	-30	SV-1-5	06/03	-289	-0	845	954
						001		013	621
SSAT:	0867	5/26/2021	-30						
SSAT:	0852	5/26/2021	-30			· '			
SSAT:	0808	5/26/2021	-30				e		

Printed: 6/7/2021 10:09:41AM

WORK ORDER

T211859

Client:Partner Engineering & Science, Inc.--TorProject Manager:Mike JaroudiProject:Marriott- BurbankProject Number:SM20-303682.1

Report To:

Partner Engineering & Science, Inc.--Tor

Bruce Eppler

2154 Torrance Blvd., Suite 200

Torrance, CA 90501

Date Due: 06/11/21 17:00 (5 day TAT)

Received By: Dave Berner Date Received: 06/04/21 09:10
Logged In By: Jennifer Berger Date Logged In: 06/04/21 17:43

Samples Received at:

Custody Seals No Received On Ice No

Containers Intact Yes
COC/Labels Agree Yes
Preservation Confirme No

Analysis	Due	TAT	Expires	Comments	
T211859-01 SV-1-5 [Air]	Sampled 06/03/21 08:45 (GM	T-08:00) Pac	ific Time (US		
&	1	,			
TO-15	06/11/21 15:00	5	07/03/21 08:45	MDL, 1,1 DFA	
T211859-02 SV-2-5 [Air]	Sampled 06/03/21 09:25 (GM	T-08:00) Pac	rific Time (US		
TO-15	06/11/21 15:00	5	07/03/21 09:25	MDL, 1,1 DFA	
T211859-03 SV-3-5 [Air]	Sampled 06/03/21 09:08 (GM	T-08:00) Pac	rific Time (US		
TO-15	06/11/21 15:00	5	07/03/21 09:08	MDL, 1,1 DFA	
T211859-04 SV-4-5 [Air]	Sampled 06/03/21 09:42 (GM	T-08:00) Pac	rific Time (US		
TO-15	06/11/21 15:00	5	07/03/21 09:42	MDL, 1,1 DFA	
T211859-05 SV-5-5 [Air]	Sampled 06/03/21 08:21 (GM	T-08:00) Pac	ific Time (US		
TO-15	06/11/21 15:00	5	07/03/21 08:21	MDL, 1,1 DFA	
T211859-06 SV-6-20 [Air (US &	r] Sampled 06/03/21 10:16 (GF	MT-08:00) Pa	acific Time		
TO-15	06/11/21 15:00	5	07/03/21 10:16	MDL, 1,1 DFA	
T211859-07 SV-7-20 [Air (US &	r] Sampled 06/03/21 10:58 (GI	MT-08:00) Pa	ncific Time		
TO-15	06/11/21 15:00	5	07/03/21 10:58	MDL, 1,1 DFA	

Printed: 6/7/2021 10:09:41AM

WORK ORDER

T211859

Client: Partner Engineering & Science, Inc.--Tor Project Manager: Mike Jaroudi

Project: Marriott-Burbank Project Number: SM20-303682.1

Analysis	Due	TAT	Expires	Comments				
T211859-08 SV-8-20 [A	air] Sampled 06/03/21 10:34 (GI	MT-08:00) Pa	ncific Time					
TO-15	06/11/21 15:00	5	07/03/21 10:34	MDL, 1,1 DFA				
T211859-09 SV-9-20 [A	air] Sampled 06/03/21 11:20 (GI	MT-08:00) Pa	cific Time					
TO-15	06/11/21 15:00	5	07/03/21 11:20	MDL, 1,1 DFA				
T211859-10 SV-4-5-DU Time (US &	T211859-10 SV-4-5-DUP [Air] Sampled 06/03/21 09:53 (GMT-08:00) Pacific Time (US &							
TO-15	06/11/21 15:00	5	07/03/21 09:53	MDL, 1,1 DFA				
T211859-11 SV-7-20-DU Time (US &	UP [Air] Sampled 06/03/21 11:0	3 (GMT-08:0	00) Pacific					
TO-15	06/11/21 15:00	5	07/03/21 11:03	MDL, 1,1 DFA				

Reviewed By

Date